【題目】如圖,在 RtABC 中,∠C90°,以 BC 為直徑的O AB 于點 D,過點 D 作∠ADE=∠A,交 AC 于點 E

1)求證:DE O 的切線;

2)若 ,BC=15cm,求 DE 的長.

【答案】1)見解析;(2DE 的長為 10.

【解析】

1連接OD,只要證明ODE90°即可;(2)先由求出AC長,由切線長定理可知EDDC,由等角對等邊可知DEAE,因此AECEDE,易求DE 的長.

1)證明:連接 OD,如圖,

∵∠C90°,

∴∠A+B90°,

OBOD,

∴∠B=∠ODB 而∠ADE=∠A,

∴∠ADE+ODB90°,

∴∠ODE90°,

ODDE,

DE O 的切線;

2)解:在 RtABC

AC×1520

ED EC O 的切線,

EDDC,

而∠ADE=∠A,

DEAE,

AECEDE

AC10,即 DE 的長為10

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝幸辉畏匠蹋?/span>

1;

2xx3=10

34y2= 8y+1 ;

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知頂點為(3,-6)的拋物線經(jīng)過點(1,-4),下列結(jié)論:①b24ac;ax2+bx+c6③若點(2,m),(-5n)在拋物線上,則mn;④關(guān)于x的一元二次方程的兩根為﹣5和﹣1,其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某村2016年的人均收入為20000元,2018年的人均收入為24200

1)求2016年到2018年該村人均收入的年平均增長率;

2)假設2019年該村人均收入的增長率與前兩年的年平均增長率相同,請你預測2019年村該村的人均收入是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,,上底AD,以對角線BD為直徑的CD切于點D,與BC交于點E,且,則圖中陰影部分的面積為____.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應“綠色生活,美麗家園”號召,某社區(qū)計劃種植甲、乙兩種花卉來美化小區(qū)環(huán)境.若種植甲種花卉,乙種花卉,共需430元;種植甲種花卉,乙種花卉,共需260元.

1)求:該社區(qū)種植甲種花卉和種植乙種花卉各需多少元?

2)該社區(qū)準備種植兩種花卉共且費用不超過6300元,那么社區(qū)最多能種植乙種花卉多少平方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三孔橋橫截面的三個孔都呈拋物線形,左右兩個拋物線形是全等的.正常水位時,大孔水面寬度為,頂點距水面,小孔頂點距水面.當水位上漲剛好淹沒小孔時,大孔的水面寬度為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.下列結(jié)論:①abc0;②2ab0;③4a2b+c0;④(a+c2b2其中正確的個數(shù)有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小李在景區(qū)銷售一種旅游紀念品,已知每件進價為6元,當銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設該紀念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).

1)求yx的函數(shù)關(guān)系式.

2)要使日銷售利潤為720元,銷售單價應定為多少元?

3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關(guān)系式,當x為何值時,日銷售利潤最大,并求出最大利潤.

查看答案和解析>>

同步練習冊答案