13、如圖,在△ABC中,DE∥FG∥BC,且AD:DF:FB=1:2:3,則S△ADE:S四邊形DFGE:S四邊形FBCG等于(  )
分析:由于DE∥FG∥BC,那么△ADE∽△AFG∽△ABC,根據(jù)AD:DF:FB=1:2:3,可求出三個(gè)相似三角形的面積比.進(jìn)而可求出△ADE、四邊形DFGE、四邊形FBCG的面積比.
解答:解:∵DE∥FG∥BC,
∴△ADE∽△AFG∽△ABC,
∵AD:DF:FB=1:2:3,
∴AD:AF:AB=1:3:6,
∴S△ADE:S△AFG:S△ABC=1:9:36,
設(shè)△ADE的面積是a,則△AFG和△ABC的面積分別是9a,36a,
則S四邊形DFGE和S四邊形FBCG分別是8a,27a,
∴S△ADE:S四邊形DFGE:S四邊形FBCG等=1:8:27.
故本題選C.
點(diǎn)評(píng):本題主要考查了相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.求出三個(gè)相似三角形的相似比是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線(xiàn),畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線(xiàn)分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案