(2006•杭州)如圖,在Rt△ABC中,已知∠ACB=90°,且CH⊥AB,HE⊥BC,HF⊥AC.
求證:(1)△HEF≌△EHC;
(2)△HEF∽△HBC.

【答案】分析:(1)根據(jù)矩形的性質可得出等量關系:HE=EH,HF=EC,∠EHF=∠HEC,所以△HEF≌△EHC;
(2)直接根據(jù)∠HFE=∠HCB,∠FHE=∠CHB=90°,可證明△HEF∽△HBC.
解答:證明:(1)由條件可知四邊形HECF為矩形.

∴△HEF≌△EHC;

(2)由(1)得,∠HFE=∠HCB,
又∠FHE=∠CHB=90°,
所以△HEF∽△HBC.
點評:本題考查三角形全等的判定方法與相似三角形的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.判定兩個三角形全等,先根據(jù)已知條件或求證的結論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.相似的判定有:AA、SAS等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年浙江省杭州市中考數(shù)學試卷(課標卷)(解析版) 題型:選擇題

(2006•杭州)如圖,△ABC、△ADE及△EFG都是等邊三角形,D和G分別為AC和AE的中點.若AB=4時,則圖形ABCDEFG外圍的周長是( )

A.12
B.15
C.18
D.21

查看答案和解析>>

科目:初中數(shù)學 來源:2006年浙江省杭州市中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2006•杭州)如圖,已知正方形ABCD的邊長為2,△BPC是等邊三角形,則△CDP的面積是    ;△BPD的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源:2006年浙江省杭州市中考數(shù)學試卷(大綱卷)(解析版) 題型:選擇題

(2006•杭州)如圖,把△PQR沿著PQ的方向平移到△P′Q′R′的位置,它們重疊部分的面積是△PQR面積的一半,若PQ=,則此三角形移動的距離PP′是( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年浙江省杭州市中考數(shù)學試卷(大綱卷)(解析版) 題型:選擇題

(2006•杭州)如圖,飛機A在目標B的正上方,在地面C處測得飛機的仰角為α,在飛機上測得地面C處的俯角為β,飛行高度為h,AC間距離為s,從這4個已知量中任取2個為一組,共有6組,那么可以求出BC間距離的有( )

A.3組
B.4組
C.5組
D.6組

查看答案和解析>>

同步練習冊答案