【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與軸的一個交點坐標為(1,0),其部分圖象如圖所示,下列結論:

4ac<b2; 方程ax2+bx+c=0的兩個根是 3a+c>0; y>0時,x的取值范圍是-1≤x<3 x<0時,yx增大而增大;

其中結論正確有__________.

【答案】①②⑤

【解析】試題解析:∵拋物線與x軸有2個交點,
b2-4ac0,所以①正確;
∵拋物線的對稱軸為直線x=1
而點(-1,0)關于直線x=1的對稱點的坐標為(3,0),
∴方程ax2+bx+c=0的兩個根是x1=-1,x2=3,所以②正確;
x=-=1,即b=-2a,
x=-1時,y=0,即a-b+c=0,
a+2a+c=0,所以③錯誤;
∵拋物線與x軸的兩點坐標為(-1,0),(3,0),
∴當-1x3時,y0,所以④錯誤;
∵拋物線的對稱軸為直線x=1,
∴當x1時,yx增大而增大,所以⑤正確.

故答案為:①②⑤

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń夥匠?/span>

1x23x0

2x2+4x50

33x2+214x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于C點,AC平分∠DAB.

(1)求證:AD⊥CD;

(2)若AD=2,AC=,求⊙O的半徑R的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經過的時間(單位:)之間的關系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結論:足球距離地面的最大高度為足球飛行路線的對稱軸是直線;足球被踢出時落地;足球被踢出時,距離地面的高度是.

其中正確結論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(59),已知拋物線的頂點D的橫坐標是2.

(1)求拋物線的解析式及頂點坐標;

(2)軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y1=﹣x2+mx+n,直線y2=kx+b,y1的對稱軸與y2交于點A(﹣1,5),點A與y1的頂點B的距離是4.

(1)求y1的解析式;

(2)若y2隨著x的增大而增大,且y1與y2都經過x軸上的同一點,求y2的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的頂點坐標分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與ABC關于x軸對稱的A1B1C1,并寫出A1、B1、C1的坐標;

(2)以原點O為位似中心,在原點的另一側畫出A2B2C2,使

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標平面xOy中,點A坐標為,,ABx軸交于點C,那么ACBC的值為______

查看答案和解析>>

同步練習冊答案