(2012•東莞)如圖,小山崗的斜坡AC的坡度是tanα=
34
,在與山腳C距離200米的D處,測得山頂A的仰角為26.6°,求小山崗的高AB(結(jié)果取整數(shù):參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).
分析:首先在直角三角形ABC中根據(jù)坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根據(jù)BD與BC之間的關系列出方程求解即可.
解答:解:∵在直角三角形ABC中,
AB
BC
=tanα=
3
4

∴BC=
4AB
3

∵在直角三角形ADB中,
AB
BD
=tan26.6°=0.50
即:BD=2AB
∵BD-BC=CD=200
∴2AB-
4
3
AB=200
解得:AB=300米,
答:小山崗的高度為300米.
點評:本題考查了解直角三角形的應用,解題的關鍵是從實際問題中整理出直角三角形并求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,直線y=2x-6與反比例函數(shù)y=
kx
(x>0)
的圖象交于點A(4,2),與x軸交于點B.
(1)求k的值及點B的坐標;
(2)在x軸上是否存在點C,使得AC=AB?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,拋物線y=
1
2
x2-
3
2
x-9與x軸交于A、B兩點,與y軸交于點C,連接BC、AC.
(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運動(點E與點A、B不重合),過點E作直線l平行BC,交AC于點D.設AE的長為m,△ADE的面積為s,求s關于m的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是
3-
1
3
π
3-
1
3
π
(結(jié)果保留π).

查看答案和解析>>

同步練習冊答案