【題目】如圖,已知等邊△ABC,CD⊥AB于D,AF⊥AC,E為線段CD上一點(diǎn),且CE=AF,連接BE,BF,EG⊥BF于G,連接DG.
(1)求證:BE=BF;
(2)試說(shuō)明DG與AF的位置關(guān)系和數(shù)量關(guān)系.
【答案】(1)見(jiàn)解析;(2)AF=2GD,AF∥DG.
【解析】
(1)由等邊三角形的性質(zhì)可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可證△ABF≌△CBE,可得BF=BE;
(2)通過(guò)證明△BEF是等邊三角形,可得BG=GF,由三角形中位線定理可得AF=2GD,AF∥DG.
證明:(1)∵△ABC是等邊三角形
∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°
∵CD⊥AB,AC=BC
∴BD=AD,∠BCD=30°,
∵AF⊥AC
∴∠FAC=90°
∴∠FAB=∠FAC﹣∠BAC=30°
∴∠FAB=∠ECB,且AB=BC,AF=CE
∴△ABF≌△CBE(SAS)
∴BF=BE
(2)AF=2GD,AF∥DG
理由如下:連接EF,
∵△ABF≌△CBE
∴∠ABF=∠CBE,
∵∠ABE+∠EBC=60°
∴∠ABE+∠ABF=60°,且BE=BF
∴△BEF是等邊三角形,且GE⊥BF
∴BG=FG,且BD=AD
∴AF=2GD,AF∥DG
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線與x軸正半軸,y軸正半軸分別交于點(diǎn)A,B,點(diǎn),點(diǎn)E在第一象限,為等邊三角形,連接AE,BE
求點(diǎn)E的坐標(biāo);
當(dāng)BE所在的直線將的面積分為3:1時(shí),求的面積;
取線段AB的中點(diǎn)P,連接PE,OP,當(dāng)是以OE為腰的等腰三角形時(shí),則______直接寫(xiě)出b的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過(guò)O點(diǎn)作OF⊥AB交⊙O于點(diǎn)D,交AC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,點(diǎn)G是EF的中點(diǎn),連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)函數(shù)學(xué)習(xí)中積累的知識(shí)與經(jīng)驗(yàn),李老師要求學(xué)生探究函數(shù)y=+1的圖象.同學(xué)們通過(guò)列表、描點(diǎn)、畫(huà)圖象,發(fā)現(xiàn)它的圖象特征,請(qǐng)你補(bǔ)充完整.
(1)函數(shù)y=+1的圖象可以由我們熟悉的函數(shù) 的圖象向上平移 個(gè)單位得到;
(2)函數(shù)y=+1的圖象與x軸、y軸交點(diǎn)的情況是: ;
(3)請(qǐng)你構(gòu)造一個(gè)函數(shù),使其圖象與x軸的交點(diǎn)為(2,0),且與y軸無(wú)交點(diǎn),這個(gè)函數(shù)表達(dá)式可以是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將二次函數(shù)y=x2﹣5x﹣6在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新圖象,若直線y=2x+b與這個(gè)新圖象有3個(gè)公共點(diǎn),則b的值為( )
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線經(jīng)過(guò)點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(1,0),則點(diǎn)C的坐標(biāo)為( 。
A.(3,)B.(,)C.(3,)D.(,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B在x軸正半軸上,點(diǎn)D在第三象限的雙曲線y=上,過(guò)點(diǎn)C作CE∥x軸交雙曲線于點(diǎn)E,連接BE,則△BCE的面積為( )
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量某建筑物CD的高度,先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了40m,此時(shí)自B處測(cè)得建筑物頂部的仰角是45°.已知測(cè)角儀的高度是1.5m,請(qǐng)你計(jì)算出該建筑物的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某商品標(biāo)牌的示意圖,⊙O與等邊△ABC的邊BC相切于點(diǎn)C,且⊙O的直徑與△ABC的高相等,已知等邊△ABC邊長(zhǎng)為4,設(shè)⊙O與AC相交于點(diǎn)E,則AE的長(zhǎng)為( 。
A.B.1C.﹣1D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com