【題目】已知拋物線頂點坐標(biāo)為,且與軸交于原點和點.對稱軸與軸交點為

1)求拋物線的解析式;

2)若點在拋物線上,且橫坐標(biāo)為,在拋物線對稱軸上找一點,使得的差最大,求此時點的坐標(biāo);

3)若點在拋物線的對稱軸上,且縱坐標(biāo)為.探究:在拋物線上是否存在點使得四點共圓?若存在求出點坐標(biāo);若不存在請說明理由.

【答案】1;(2 ;(3Q5,5)或()或().

【解析】

1)設(shè)拋物線的解析式為y=ax-22-4,解方程即可得到結(jié)論;
2)由(1)知,拋物線的解析式為y=x2-4x,解方程得到C4,0),求得A-212),而拋物線的對稱軸為x=2,根據(jù)三角形三邊關(guān)系定理之兩邊之差小于第三邊,即可得到結(jié)論;
3)由(2)知,拋物線的對稱軸為直線x=2,求得P2,8),由點O、M、PQ四點共圓,得到點QRtOMP外接圓上,設(shè)Q坐標(biāo)為(m,n),則m2-4m=n①,解方程即可得到結(jié)論.

解:(1)∵拋物線頂點坐標(biāo)為(2,-4),
∴設(shè)拋物線的解析式為y=ax-22-4,
∵拋物線過原點,
0=a0-22-4
a=1,
∴拋物線的解析式為y=x-22-4=x2-4x;
2)由(1)知,拋物線的解析式為y=x2-4x,
y=0,則x2-4x=0
x=0x=4,
C40),
A點的橫坐標(biāo)為-2
y=4-4×-2=12,
A-212),
而拋物線的對稱軸為x=2,
∴點C40)關(guān)于拋物線的對稱軸x=2的對稱點為O0,0),
則過點O,A的直線與拋物線的對稱軸的交點為點B,理由是三角形三邊關(guān)系定理之兩邊之差小于第三邊,
A-212),
∴直線OA的解析式為y=-6x
當(dāng)x=2時,y=-12
∴點B2,-12);
3)由(2)知,拋物線的對稱軸為直線x=2,
P2,8),
∵拋物線的對稱軸與x軸交點為M,
M20),
∴∠OMP=90°,
∵點OM、P、Q四點共圓,則點QRtOMP外接圓上,
∴點QOP的中點的距離等于半徑OP=×,而OP的中點坐標(biāo)為(1,4),
由(1)知,拋物線的解析式為y=x2-4x,設(shè)Q坐標(biāo)為(m,n),則m2-4m=n①,
∴(m-12+n-42=17②,∴m2-2m+n2-8n=0,
m2-2m+m2-4m2-8m2-4m=m2-2m+m2m-42-8mm-4
=m[m-2+mm-42-8m-4]=m[m-5+m-5)(m-42+5m-42-8m-5+3-8]
=m{m-5+m-5)(m-42+5[m-52+2m-5+1]-8m-5-5}
=m[m-5+m-5)(m-42+5m-52+10m-5-8m-5]
=mm-5[1+m-42+5m-5+2]
=mm-5)(m2-3m-6
mm-5)(m2-3m-6=0
m=0(舍)或m=5m2-3m-6=0,
m=5m= ,
Q5,5)或()或().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒感染的肺炎疫情牽動著全國人民的心,來自全國四面八方的救援物資快速向疫區(qū)匯聚.我省某食品公司向武漢捐獻(xiàn)一批飲用水和蔬菜共320件,一件飲用水與一件蔬菜價格的比是25,飲用水總價4萬元,蔬菜總價6萬元.請解答下列問題:

1)求飲用水和蔬菜各有多少件?

2)現(xiàn)計劃租用甲、乙兩種型號的貨車共8輛,一次性將這批飲用水和蔬菜全部運往受災(zāi)地區(qū)某中學(xué).已知每輛甲型貨車最多可裝飲用水40件和蔬菜10件,每輛乙型貨車最多可裝飲用水和蔬菜各20件,則該單位安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來;

3)在(2)的條件下,如果甲型貨車每輛需付運費400元,乙型貨車每輛需付運費360元,該單位應(yīng)選擇哪種方案可使運費最少?最少運費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的圖象可能是( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場新推出一個“極速飛車”的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度,其中斜坡軌道BC的坡度為,BC=米,CD=8米,∠D=36°,(其中A,BC,D均在同一平面內(nèi))則垂直升降電梯AB的高度約為__________米.(精確到0.1米,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,點的坐標(biāo)為,是第一象限內(nèi)任意一點,連接 ,若,則就叫做點的“雙角坐標(biāo)”.例如:點的“雙角坐標(biāo)”為.若點軸的距離為,則的最小值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EF分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FPBA延長線于點Q,下列結(jié)論AEBF;AEBF;S四邊形ECFG2SBGE.正確的有_____.(填正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC,以AB為直徑的⊙OBC相交于點DBD2AD,過點DDEACBA延長線于點E,垂足為點F

1)求tanADF的值;

2)證明:DE⊙O的切線;

3)若⊙O的半徑R5,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場開業(yè),為了活躍氣氛,用紅、黃、藍(lán)三色均分的轉(zhuǎn)盤設(shè)計了兩種抽獎方案,凡來商場消費的顧客都可以選擇一種抽獎方案進(jìn)行抽獎(若指針恰好停在分割線上則重轉(zhuǎn)).

方案一:轉(zhuǎn)動轉(zhuǎn)盤一次,指針落在紅色區(qū)域可領(lǐng)取一份獎品;

方案二:轉(zhuǎn)動轉(zhuǎn)盤兩次,指針落在不同顏色區(qū)域可領(lǐng)取一份獎品.

1)若選擇方案一,則可領(lǐng)取一份獎品的概率是   ;

2)選擇哪個方案可以使領(lǐng)取一份獎品的可能性更大?請用列表法或畫樹狀圖法說明理由.

查看答案和解析>>

同步練習(xí)冊答案