當m是什么整數(shù)時,關于x的一元二次方程mx2-4x+4=0與x2-4mx+4m2-4m-5=0的解都是整數(shù)?
分析:這兩個一元二次方程都有解,因而根與判別式△≥0,即可得到關于m不等式,從而求得m的范圍,再根據(jù)m是整數(shù),即可得到m的可能取到的幾個值,然后對每個值進行檢驗,是否符合使兩個一元二次方程的解都是整數(shù)即可確定m的值.
解答:,解:∵關于x的一元二次方程mx2-4x+4=0與x2-4mx+4m2-4m-5=0有解,
則m≠0,
∴△≥0
mx2-4x+4=0,
∴△=16-16m≥0,即m≤1;
x2-4mx+4m2-4m-5=0,
△=16m2-16m2+16m+20≥0,
∴4m+5≥0,m≥-
5
4
;
∴-
5
4
≤m≤1,而m是整數(shù),
所以m=1,m=0(舍去),m=-1(一個為x2-4x+4=0,另一個為x2+4x+3=0,沖突,故舍去),
當m=1時,mx2-4x+4=0即x2-4x+4=0,方程的解是x1=x2=2;
x2-4mx+4m2-4m-5=0即x2-4x-5=0,方程的解是x1=5,x2=-1;
當m=0時,mx2-4x+4=0時,方程是-4x+4=0不是一元二次方程,故舍去.
故m=1.
點評:解答此題要知道一元二次方程根的情況與判別式△的關系,首先根據(jù)根的判別式確定m的范圍是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

當m是什么整數(shù)時,關于x的一元二次方程x2-2mx+m2-4m-5=0與mx2-8x+16=0的根都是整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

當m是什么整數(shù)時,關于x的一元二次方程x2-2mx+m2-4m-5=0與mx2-8x+16=0的根都是整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2013年中考數(shù)學押題試卷(一)(解析版) 題型:解答題

當m是什么整數(shù)時,關于x的一元二次方程mx2-4x+4=0與x2-4mx+4m2-4m-5=0的解都是整數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《一元二次方程》(03)(解析版) 題型:解答題

(2000•黑龍江)當m是什么整數(shù)時,關于x的一元二次方程mx2-4x+4=0與x2-4mx+4m2-4m-5=0的解都是整數(shù)?

查看答案和解析>>

同步練習冊答案