如圖,⊙O1與⊙O2相交于點(diǎn)A、B,順次連結(jié)O1、A、O2、B四點(diǎn),得四邊形O1AO2B.

(1)根據(jù)我們學(xué)習(xí)矩形、菱形、正方形性質(zhì)時(shí)所獲得的經(jīng)驗(yàn),探求圖中的四邊形有哪些性質(zhì)?(用文字語(yǔ)言寫出4條性質(zhì))

性質(zhì)1:____________________________________________

性質(zhì)2:____________________________________________

性質(zhì)3:____________________________________________

性質(zhì)4:____________________________________________

(2)設(shè)⊙O1的半徑為R,⊙O2的半徑為r(R>r),O1,O2的距離為d.當(dāng)d變化時(shí),四邊形O1AO2B的形狀也會(huì)發(fā)生變化,要使四邊形OA1O2B是凸四邊形(把四邊形的任一邊向兩方延長(zhǎng),其他各邊都在延長(zhǎng)所得直線同一旁的四邊形),則d的取值范圍是________.

答案:
解析:

  (1)性質(zhì)可以是:有一組對(duì)角相等;有兩組鄰邊相等;對(duì)邊之和相等;對(duì)角線互相垂直;有一條對(duì)角線平分一組對(duì)角;是軸對(duì)稱圖形;其面積等于兩條對(duì)角線乘積的一半.這個(gè)四邊形也具有一般四邊形的性質(zhì),如不穩(wěn)定性;內(nèi)角和為360“;外角和為360”等;

  (2)<d<R+r


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,直線AB過點(diǎn)P交⊙O1于A,交⊙O2于B,點(diǎn)C、D分別為⊙O1、⊙O2上的點(diǎn),且∠ACP=65°,則∠BDP=
65
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于M點(diǎn),AF是兩圓的外公切線,A、B是切點(diǎn),DF經(jīng)過O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經(jīng)過M點(diǎn),連接AD.
(1)求證:AD∥BC;
(2)求證:MF2=AF•BF;
(3)如果⊙O1的直徑長(zhǎng)為8,tan∠ACB=
34
,求⊙O2的直徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1與⊙O2相交于C、D兩點(diǎn),⊙O1的割線PAB與DC的延長(zhǎng)線交于點(diǎn)P,PN與⊙O2相切于點(diǎn)N,若PB=10,AB=6,則PN=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖:⊙O1與⊙O2相交于AB兩點(diǎn),過點(diǎn)A、B的直線分別與⊙O1交于C、E,與⊙O2交于D、F,連接CE、DF.
求證:CE∥DF.

查看答案和解析>>

同步練習(xí)冊(cè)答案