在平面直角坐標(biāo)系中,將拋物線y=3x2先向右平移1個(gè)單位,再向上平移2個(gè)單位,得到的拋物線的解析式是( 。

A.y=3(x+1)2+2        B.y=3(x+1)2﹣2

C.y=3(x﹣1)2+2       D.y=3(x﹣1)2﹣2


C

【解析】∵拋物線y=3x2的對(duì)稱軸為直線x=0,頂點(diǎn)坐標(biāo)為(0,0),

∴拋物線y=3x2向右平移1個(gè)單位,再向上平移2個(gè)單位得到的拋物線的對(duì)稱軸為直線x=1,頂點(diǎn)坐標(biāo)為(1,2),∴平移后拋物線的解析式為y=3(x﹣1)2+2.

故選C.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


某校九年級(jí)數(shù)學(xué)興趣小組的同學(xué)開展了測(cè)量東江寬度的活動(dòng).如圖,他們?cè)诤訓(xùn)|岸邊的點(diǎn)測(cè)得河西岸邊的標(biāo)志物在它的正西方向,然后從點(diǎn)出發(fā)沿河岸向正北方向行進(jìn)米到點(diǎn)處,測(cè)得在點(diǎn)的南偏西的方向上,他們測(cè)得東江的寬度是多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個(gè)數(shù)是( 。

 

A.2         B.3         C.4         D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,A是拋物線上的一個(gè)動(dòng)點(diǎn),且點(diǎn)A在第一象限內(nèi).AE⊥y軸于點(diǎn)E,點(diǎn)B坐標(biāo)為(0,2),直線AB交軸于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于y軸對(duì)稱,直線DE與AB相交于點(diǎn)F,連結(jié)BD.設(shè)線段AE的長(zhǎng)為m,△BED的面積為S.

(1)當(dāng)時(shí),求S的值.

(2)求S關(guān)于的函數(shù)解析式.

(3)①若S=時(shí),求的值;

②當(dāng)m>2時(shí),設(shè),猜想k與m的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖中幾何體的俯視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


二元一次方程組的解為                 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如果菱形的兩條對(duì)角線的長(zhǎng)為a和b,且a,b滿足(a﹣1)2+=0,那么菱形的面積等于  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在△ABC中,∠C=90°,∠B=∠22.5°,DE垂直平分AB交BC于E,BC=2+2,則 AC=(    )

A.1       B.2         C.3        D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


當(dāng)三角形中一個(gè)內(nèi)角α是另一個(gè)內(nèi)角β的兩倍時(shí),我們稱此三角形為“特征三角形”,其中α稱為“特征角”.如果一個(gè)“特征三角形”的“特征角”為100°,那么這個(gè)“特征三角形”的最小內(nèi)角的度數(shù)為__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案