13、如果x2+bx+16=(x-4)2,則b的值為( 。
分析:先把原式的右邊利用完全平方公式展開(kāi),再利用等式的對(duì)應(yīng)項(xiàng)的系數(shù)相等可求b.
解答:解:∵x2+bx+16=(x-4)2,
∴x2+bx+16=x2-8x+16,
∴b=-8.
故選C.
點(diǎn)評(píng):本題考查了完全平方公式.(a±b)2=a2±2ab+b2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•龍崗區(qū)模擬)已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=-2.
(1)求此拋物線的表達(dá)式;
(2)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),
(3)點(diǎn)P是拋物線對(duì)稱軸上一動(dòng)點(diǎn),拋物線上是否存在一點(diǎn)Q,使得以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形?如果存在,請(qǐng)直接寫(xiě)出Q點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)
如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA="16" cm, OC=8cm,現(xiàn)有兩動(dòng)點(diǎn)PQ分別從O、C同時(shí)出發(fā),P在線段OA上沿OA方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在線段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用含t的式子表示△OPQ的面積S;
(2)判斷四邊形OPBQ的面積是否是一個(gè)定值,如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由;
(3)當(dāng)△OPQ∽△ABP時(shí),拋物線yx2+bx+c經(jīng)過(guò)B、P兩點(diǎn),求拋物線的解析式;
(4)在(3)的條件下,過(guò)線段BP上一動(dòng)點(diǎn)M軸的平
行線交拋物線于N,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省石家莊市42中學(xué)九年級(jí)第一次模擬考試數(shù)學(xué)卷 題型:計(jì)算題

(本小題滿分12分)
如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA="16" cm, OC=8cm,現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從O、C同時(shí)出發(fā),P在線段OA上沿OA方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在線段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用含t的式子表示△OPQ的面積S;
(2)判斷四邊形OPBQ的面積是否是一個(gè)定值,如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由;
(3)當(dāng)△OPQ∽△ABP時(shí),拋物線yx2+bx+c經(jīng)過(guò)B、P兩點(diǎn),求拋物線的解析式;
(4)在(3)的條件下,過(guò)線段BP上一動(dòng)點(diǎn)M軸的平
行線交拋物線于N,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省莆田市仙游縣東宅中學(xué)九年級(jí)(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

如果x2+bx+16=(x-4)2,則b的值為( )
A.-4
B.4
C.-8
D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案