如圖,矩形ABCD中,AB=4,AD=8,P是對(duì)角線(xiàn)AC上一動(dòng)點(diǎn),連接PD,過(guò)點(diǎn)P作PE⊥PD交線(xiàn)段BC于E,設(shè)AP=x.
(1)求PD:PE的值;
(2)設(shè)DE2=y,試求出y與x的函數(shù)關(guān)系式,并求x取何值時(shí),y有最小值;
(3)當(dāng)△PCD為等腰三角形時(shí),求AP的長(zhǎng).

解:(1)過(guò)P作MN⊥BC交BC、AD于N、M,則MN∥CD.

,
,
∵∠MPD+∠MDP=∠MPD+∠NPE=90°,
∴∠MDP=∠NPE.
又∵∠DMP=∠PNE=90°,
∴△DMP∽△PNE.
,
∴PD:PE=2:1;

(2)∵PM=x,

∵CN=,,

∵DE2=CD2+CE2,

當(dāng)DP⊥AC時(shí)y有最小值,可求AP=,即當(dāng)x=時(shí),y有最小值.

(3)當(dāng)PD=PC時(shí),則AP=
當(dāng)CP=CD時(shí),則AP=
當(dāng)DP=DC時(shí),則AP=
分析:(1)此題要通過(guò)構(gòu)建相似三角形求解,過(guò)P作MN⊥BC于N,交AD于M,若AP=x,通過(guò)△APM∽△ACD即可得到PM、DM的表達(dá)式,同理可求得PN、CN表達(dá)式,由于PD⊥PE,可證得△PDM∽△EPN,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,即可得到PD:PE的值.
(2)由于△DPE是直角三角形,即可由勾股定理求得DE2的表達(dá)式,也就得到了關(guān)于y、x的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出y的最小值及對(duì)應(yīng)的x的值.
(3)在上面兩個(gè)題中,已經(jīng)求得了PD、PC的表達(dá)式,可根據(jù):
①PD=PC,②PD=DC,③PC=CD,三個(gè)不同的等量關(guān)系,列方程求出對(duì)應(yīng)的x的值,即AP的長(zhǎng).
點(diǎn)評(píng):此題主要考查了矩形的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理以及等腰三角形的構(gòu)成條件等重要知識(shí),同時(shí)還考查了分類(lèi)討論的數(shù)學(xué)思想,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點(diǎn),DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點(diǎn)P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿(mǎn)足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點(diǎn),且BE=ED,P是對(duì)角線(xiàn)上任意一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長(zhǎng)為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊(cè)答案