(2013•樂山)如圖,小方格都是邊長為1的正方形,則以格點為圓心,半徑為1和2的兩種弧圍成的“葉狀”陰影圖案的面積為
2π-4
2π-4
分析:連接AB,則陰影部分面積=2(S扇形AOB-S△ABO),依此計算即可求解.
解答:解:

由題意得,陰影部分面積=2(S扇形AOB-S△A0B)=2(
90π×22
360
-
1
2
×2×2)=2π-4.
故答案為:2π-4.
點評:此題主要考查了扇形的面積公式,應用與設計作圖,關(guān)鍵是需要同學們仔細觀察圖形,將不規(guī)則面積轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•樂山)如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=
2
x
的圖象上,第二象限內(nèi)的點B在反比例函數(shù)y=
k
x
的圖象上,且OA⊥OB,cosA=
3
3
,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樂山)如圖,在四邊形ABCD中,∠A=45°.直線l與邊AB,AD分別相交于點M,N,則∠1+∠2=
225°
225°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樂山)如圖,已知線段AB.
(1)用尺規(guī)作圖的方法作出線段AB的垂直平分線l(保留作圖痕跡,不要求寫出作法);
(2)在(1)中所作的直線l上任意取兩點M,N(線段AB的上方).連結(jié)AM,AN,BM,BN.求證:∠MAN=∠MBN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樂山)如圖,山頂有一鐵塔AB的高度為20米,為測量山的高度BC,在山腳點D處測得塔頂A和塔基B的仰角分別為60°和45°.求山的高度BC.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樂山)如圖,已知直線y=4-x與反比例函數(shù)y=
m
x
(m>0,x>0)的圖象交于A,B兩點,與x軸,y軸分別相交于C,D兩點.
(1)如果點A的橫坐標為1,利用函數(shù)圖象求關(guān)于x的不等式4-x<
m
x
的解集;
(2)是否存在以AB為直徑的圓經(jīng)過點P(1,0)?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案