若一元二次方程ax2+bx+c=0(ac>0)的兩根之比為2:3,那么a,b,c間的關(guān)系應當是(  )
分析:設(shè)方程兩根分別為2k,3k,根據(jù)根與系數(shù)的關(guān)系得到2k+3k=-
b
a
,2k•3k=
c
a
,則k=-
b
5a
,代入2k•3k=
c
a
變形即可.
解答:解:設(shè)方程兩根分別為2k,3k,
∴2k+3k=-
b
a
,2k•3k=
c
a
,
∴k=-
b
5a
,
∴6×(-
b
5a
2=
c
a
,
∴6b2=25ac.
故選C.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則x1+x2=-
b
a
,x1•x2=
c
a
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

若一元二次方程ax2+bx+c=0(a≠0)有一個根為-1,則a、b、c的關(guān)系是
a-b+c=0
a-b+c=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

二次函數(shù)y=ax2+bx的圖象如圖,若一元二次方程ax2+bx+m=0有實數(shù)根,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若一元二次方程ax2+bx+c=0中的二次項系數(shù)與常數(shù)項之和等于一次項系數(shù),則方程必有一根是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過點A(2,0),B(-2,-4),對稱軸為直線x=-1.
(1)求這個二次函數(shù)的解析式;
(2)若-3<x<3,直接寫出y的取值范圍;
(3)若一元二次方程ax2+bx+c-m=0(a≠0,m為實數(shù))在-3<x<3的范圍內(nèi)有實數(shù)根,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若一元二次方程ax2+bx+c=0中的a=2,b=0,c=-1,則這個一元二次方程是( 。

查看答案和解析>>

同步練習冊答案