若正六邊形ABCDEF繞著中心O旋轉角α得到的圖形與原來的圖形重合,則α最小值為________度.

60
分析:根據(jù)正六邊形的中心角是60°解答.
解答:∵正六邊形的中心角為360°÷6=60°,
∴正六邊形ABCDEF繞著中心O旋轉60°的整數(shù)倍得到的圖形與原來的圖形重合,
∴旋轉角α的最小值為60°.
故答案為:60.
點評:本題考查旋轉對稱圖形的概念:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•婺城區(qū)一模)某學習小組在探索“各內角都相等的圓內接多邊形是否為正多邊形”時,有如下探討:

甲同學:我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內接矩形不一定是正方形.
乙同學:我知道,邊數(shù)為3時,它是正三角形;我想,邊數(shù)為5時,它可能也是正五邊形…
丙同學:我發(fā)現(xiàn)邊數(shù)為6時,它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內接五邊形ABCDE的各內角均相等,則∠ABC=
108°
108°
,請簡要說明圓內接五邊形ABCDE為正五邊形的理由.
(2)如圖2,請證明丙同學構造的六邊形各內角相等.
(3)根據(jù)以上探索過程,就問題“各內角都相等的圓內接多邊形是否為正多邊形”的結論與“邊數(shù)n(n≥3,n為整數(shù))”的關系,提出你的猜想(不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某學習小組在探索“各內角都相等的圓內接多邊形是否為正多邊形”時,有如下探討:

甲同學:我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內接矩形不一定是正方形.
乙同學:我知道,邊數(shù)為3時,它是正三角形;我想,邊數(shù)為5時,它可能也是正五邊形…
丙同學:我發(fā)現(xiàn)邊數(shù)為6時,它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內接五邊形ABCDE的各內角均相等,則∠ABC=______,請簡要說明圓內接五邊形ABCDE為正五邊形的理由.
(2)如圖2,請證明丙同學構造的六邊形各內角相等.
(3)根據(jù)以上探索過程,就問題“各內角都相等的圓內接多邊形是否為正多邊形”的結論與“邊數(shù)n(n≥3,n為整數(shù))”的關系,提出你的猜想(不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省金華市婺城區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

某學習小組在探索“各內角都相等的圓內接多邊形是否為正多邊形”時,有如下探討:

甲同學:我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內接矩形不一定是正方形.
乙同學:我知道,邊數(shù)為3時,它是正三角形;我想,邊數(shù)為5時,它可能也是正五邊形…
丙同學:我發(fā)現(xiàn)邊數(shù)為6時,它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內接五邊形ABCDE的各內角均相等,則∠ABC=______,請簡要說明圓內接五邊形ABCDE為正五邊形的理由.
(2)如圖2,請證明丙同學構造的六邊形各內角相等.
(3)根據(jù)以上探索過程,就問題“各內角都相等的圓內接多邊形是否為正多邊形”的結論與“邊數(shù)n(n≥3,n為整數(shù))”的關系,提出你的猜想(不需證明).

查看答案和解析>>

同步練習冊答案