如圖,己知拋物線y=x2+bx+c與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,-3).
(1)求拋物線的解析式;
(2)如圖(1),己知點(diǎn)H(0,-1).問在拋物線上是否存在點(diǎn)G (點(diǎn)G在y軸的左側(cè)),使得S△GHC=S△GHA?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖(2),拋物線上點(diǎn)D在x軸上的正投影為點(diǎn)E(-2,0),F(xiàn)是OC的中點(diǎn),連接DF,P為線段BD上的一點(diǎn),若∠EPF=∠BDF,求線段PE的長(zhǎng).

【答案】分析:(1)由拋物線y=x2+bx+c與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,-3),利用待定系數(shù)法即可求得二次函數(shù)的解析式;
(2)分別從GH∥AC與GH與AC不平行去分析,注意先求得直線GH的解析式,根據(jù)交點(diǎn)問題即可求得答案,小心不要漏解;
(3)利用待定系數(shù)法求得直線DF的解析式,即可證得△PBE∽△FDP,由相似三角形的對(duì)應(yīng)邊成比例,即可求得答案.
解答:解:(1)由題意得:,
解得:,
∴拋物線的解析式為:y=x2+2x-3;

(2)解法一:
假設(shè)在拋物線上存在點(diǎn)G,設(shè)G(m,n),顯然,當(dāng)n=-3時(shí),△HGC不存在.
①當(dāng)n>-3時(shí),
可得S△GHA=-++,S△GHC=-m,
∵S△GHC=S△GHA,
∴m+n+1=0,

解得:,
∵點(diǎn)G在y軸的左側(cè),
∴G(-);
②當(dāng)-4≤n<-3時(shí),
可得S△GHA=--,S△GHC=-m,
∵S△GHC=S△GHA,
∴3m-n-1=0,
,
解得:,
∵點(diǎn)G在y軸的左側(cè),
∴G(-1,-4).
∴存在點(diǎn)G(-)或G(-1,-4).
解法二:
①如圖①,當(dāng)GH∥AC時(shí),點(diǎn)A,點(diǎn)C到GH的距離相等,
∴S△GHC=S△GHA,
可得AC的解析式為y=3x-3,
∵GH∥AC,得GH的解析式為y=3x-1,
∴G(-1,-4);
②如圖②,當(dāng)GH與AC不平行時(shí),
∵點(diǎn)A,C到直線GH的距離相等,
∴直線GH過(guò)線段AC的中點(diǎn)M(,-).
∴直線GH的解析式為y=-x-1,
∴G(-),
∴存在點(diǎn)G(-,)或G(-1,-4).

(3)解法一:
如圖③,∵E(-2,0),
∴D的橫坐標(biāo)為-2,
∵點(diǎn)D在拋物線上,
∴D(-2,-3),
∵F是OC中點(diǎn),
∴F(0,-),
∴直線DF的解析式為:y=x-,
則它與x軸交于點(diǎn)Q(2,0),
則QB=QD,得∠QBD=∠QDB,∠BPE+∠EPF+∠FPD=∠DFP+∠PDF+∠FPD=180°,
∵∠EPF=∠PDF,
∴∠BPE=∠DFP,
∴△PBE∽△FDP,
,
得:PB•DP=,
∵PB+DP=BD=,
∴PB=,
即P是BD的中點(diǎn),
連接DE,
∴在Rt△DBE中,PE=BD=

解法二:
可知四邊形ABDC為等腰梯形,取BD的中點(diǎn)P′,
P′F=(OB+CD)=,
P′F∥CD∥AB,
連接EF,可知EF=DF=,
即EF=FP′=FD,
即△FEP′相似△FP′D,
即∠EP′F=∠FP′D=∠FDP′,
即∠EP′F和∠EPF重合,
即P和P′重合,
P為BC中點(diǎn),
PE=BD=(△BDE為直角三角形).
點(diǎn)評(píng):此題考查了待定系數(shù)法求二次函數(shù)的解析式,直線與二次函數(shù)的交點(diǎn)問題以及三角形面積問題的求解等知識(shí).此題綜合性很強(qiáng),難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想、分類討論思想與方程思想的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,己知拋物線y=x2+px+q與x軸交于A、B兩點(diǎn),∠ACB=90°,交y軸負(fù)半軸于C點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),且
1
OA
-
1
OB
=
2
OC

(1)求拋物線的解析式,
(2)求△ABC的外接圓面積;
(3)設(shè)拋物線y=x2+px+q的頂點(diǎn)為D,求四邊形ACDB的面積;
(4)在拋物線y=x2+px+q上是否存在點(diǎn)P,使得△PAB的面積為2
2
?如果有,這樣的點(diǎn)有幾個(gè)?寫精英家教網(wǎng)出它們的坐標(biāo);如果沒有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,己知拋物線y=x2+px+q與x軸交于A、B兩點(diǎn),∠ACB=90°,交y軸負(fù)半軸于C點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),且數(shù)學(xué)公式
(1)求拋物線的解析式,
(2)求△ABC的外接圓面積;
(3)設(shè)拋物線y=x2+px+q的頂點(diǎn)為D,求四邊形ACDB的面積;
(4)在拋物線y=x2+px+q上是否存在點(diǎn)P,使得△PAB的面積為2數(shù)學(xué)公式?如果有,這樣的點(diǎn)有幾個(gè)?寫出它們的坐標(biāo);如果沒有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第27章《二次函數(shù)》中考題集(48):27.3 實(shí)踐與探索(解析版) 題型:解答題

如圖,己知拋物線y=x2+px+q與x軸交于A、B兩點(diǎn),∠ACB=90°,交y軸負(fù)半軸于C點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),且
(1)求拋物線的解析式,
(2)求△ABC的外接圓面積;
(3)設(shè)拋物線y=x2+px+q的頂點(diǎn)為D,求四邊形ACDB的面積;
(4)在拋物線y=x2+px+q上是否存在點(diǎn)P,使得△PAB的面積為2?如果有,這樣的點(diǎn)有幾個(gè)?寫出它們的坐標(biāo);如果沒有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第26章《二次函數(shù)》中考題集(46):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

如圖,己知拋物線y=x2+px+q與x軸交于A、B兩點(diǎn),∠ACB=90°,交y軸負(fù)半軸于C點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),且
(1)求拋物線的解析式,
(2)求△ABC的外接圓面積;
(3)設(shè)拋物線y=x2+px+q的頂點(diǎn)為D,求四邊形ACDB的面積;
(4)在拋物線y=x2+px+q上是否存在點(diǎn)P,使得△PAB的面積為2?如果有,這樣的點(diǎn)有幾個(gè)?寫出它們的坐標(biāo);如果沒有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年廣東省深圳市中考數(shù)學(xué)信息卷(二)(解析版) 題型:解答題

如圖,己知拋物線y=x2+bx+c與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,-3).
(1)求拋物線的解析式;
(2)如圖(1),己知點(diǎn)H(0,-1).問在拋物線上是否存在點(diǎn)G (點(diǎn)G在y軸的左側(cè)),使得S△GHC=S△GHA?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖(2),拋物線上點(diǎn)D在x軸上的正投影為點(diǎn)E(-2,0),F(xiàn)是OC的中點(diǎn),連接DF,P為線段BD上的一點(diǎn),若∠EPF=∠BDF,求線段PE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案