(2006•臨沂)為了了解家庭日常生活消費情況,小亮記錄了他家一年中7周的日常生活消費費用.數(shù)據如下(單位:元):
230    195    180    250    270    455    170
請你用統(tǒng)計初步的知識,計算小亮家平均每年(每年按52周計算)的日常生活消費總費用.
【答案】分析:根據平均數(shù)的概念求出平均每周日常生活消費的費用,然后乘以52,即為全年的日常生活消費的費用.
解答:解:由題中7周的數(shù)據.可知小亮家平均每周日常生活消費的費用為:
(230+195+180+250+270+455+170)=250(元)
∴小亮家每年日常生活消費總贊用為:250×52=13000(元).
答:小亮家平均每年的日常生活消費總費用約為13000元.
點評:本題考查了平均數(shù)的計算和用樣本平均數(shù)計算總體.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年安徽省巢湖市第七中學中考數(shù)學復習模擬試卷(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(眾安前進初中 吳順良等)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山東省臨沂市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•臨沂)類比二次函數(shù)的圖象的平移,我們對反比例函數(shù)的圖象作類似的變換:
(1)將y=的圖象向右平移1個單位,所得圖象的函數(shù)表達式為______,再向上平移1個單位,所得圖象的函數(shù)表達式為______;
(2)函數(shù)y=的圖象可由y=的圖象向______平移______個單位得到;y=的圖象可由哪個反比例函數(shù)的圖象經過怎樣的變換得到;
(3)一般地,函數(shù)y=(ab≠0,且a≠b)的圖象可由哪個反比例函數(shù)的圖象經過怎樣的變換得到?

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山東省臨沂市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案