【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發(fā),沿同一路線勻速行駛,相向而行,快車到達乙地停留一段時間后,按原路原速返回甲地.慢車到達甲地比快車到達甲地早 小時,慢車速度是快車速度的一半,快、慢兩車到達甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時間x(小時)的函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:

(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式;
(3)兩車出發(fā)后經(jīng)過多長時間相距90千米的路程?直接寫出答案.

【答案】
(1)解:快車速度:180×2÷( - )=120千米/時,

慢車速度:120÷2=60千米/時


(2)解:快車停留的時間: ×2= (小時),

+ =2(小時),即C(2,180),

設(shè)CD的解析式為:y=kx+b,則

將C(2,180),D( ,0)代入,得

,

解得

∴快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式為y=﹣120x+420(2≤x≤


(3)解:相遇之前:120x+60x+90=180,

解得x=

相遇之后:120x+60x﹣90=180,

解得x= ;

快車從甲地到乙地需要180÷120= 小時,

快車返回之后:60x=90+120(x﹣

解得x=

綜上所述,兩車出發(fā)后經(jīng)過 小時相距90千米的路程.


【解析】(1)根據(jù)路程與相應(yīng)的時間,求得快車與慢車的速度;(2)先求得點C的坐標,再根據(jù)點D的坐標,運用待定系數(shù)法求得CD的解析式;(3)分三種情況:在兩車相遇之前;在兩車相遇之后;在快車返回之后,分別求得時間即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求代數(shù)式的值:( )÷ ,其中sin230°<a<tan260°,請你取一個合適的整數(shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=4,SABC=4 ,點P、Q、K分別為線段AB、BC、AC上任意一點,則PK+QK的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAC=∠ACB,要使四邊形ABCD成為平行四邊形,則應(yīng)增加的條件不能是(

A.AD=BC
B.OA=OC
C.AB=CD
D.∠ABC+∠BCD=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=6,AB=4,點E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點P是直線EF、GH之間任意一點,連接PE、PF、PG、PH,則△PEF和△PGH的面積和等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于坐標平面內(nèi)的點,現(xiàn)將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經(jīng)1次斜平移后的點的坐標為(3,5),已知點A的坐標為(1,0).
(1)分別寫出點A經(jīng)1次,2次斜平移后得到的點的坐標.
(2)如圖,點M是直線l上的一點,點A關(guān)于點M的對稱點的點B,點B關(guān)于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經(jīng)n次斜平移后得到,且點C的坐標為(7,6),求出點B的坐標及n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+9﹣b2(b為常數(shù))經(jīng)過坐標原點O,且與x軸交于另一點E.其頂點M在第一象限.

(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)點A是該拋物線上位于x軸上方,且在其對稱軸左側(cè)的一個動點;過點A作x軸的平行線交該拋物線于另一點D,再作AB⊥x軸于點B,DC⊥x軸于點C.
①當(dāng)線段AB、BC的長都是整數(shù)個單位長度時,求矩形ABCD的周長;
②求矩形ABCD的周長的最大值,并寫出此時點A的坐標;
③當(dāng)矩形ABCD的周長取得最大值時,它的面積是否也同時取得最大值?請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD對折,點C落在點C′的位置,BC′交AD于點G.
(1)求證:AG=C′G;
(2)如圖2,再折疊一次,使點D與點A重合,得折痕EN,EN交AD于點M,求EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,點E在邊AB上,且BE=1,若點P在對角線BD上移動,則PA+PE的最小值是

查看答案和解析>>

同步練習(xí)冊答案