5.在反比例函數(shù)y=$\frac{k+3}{x}$圖象的每一支曲線上,y都隨x的增大而減小,則k的取值范圍是( 。
A.k>-3B.k>3C.k<3D.k<-3

分析 根據(jù)題意得出關(guān)于k的不等式,求出k的取值范圍即可.

解答 解:∵在反比例函數(shù)y=$\frac{k+3}{x}$圖象的每一支曲線上,y都隨x的增大而減小,
∴k+3>0,解得k>-3.
故選A.

點評 本題考查的是反比例函數(shù)的性質(zhì),熟知反比例函數(shù)的增減性是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.在同一直角坐標(biāo)系內(nèi),一次函數(shù)y=kx+b與y=2kx-b的圖象分別為直線為l1,l2,則下列圖象中可能正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.下面關(guān)于平方根的說法中正確的是( 。
A.任何數(shù)都有兩個平方根B.若a>0,x2=a,則x是a的一個平方根
C.2的平方根是4D.若a>0,x2=a,則a是x的一個平方根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.解一元一次方程:
(1)2(x-1)=$\frac{1}{3}$x+3;
(2)$\frac{x+1}{2}$=3+$\frac{2-x}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB和矩形的三邊AE、ED、DB組成,已知河底ED是水平的,ED=16米,AE=8米,拋物線的頂點C到ED的距離是11米,以ED所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標(biāo)系.
(1)根據(jù)題意,填空:
①頂點C的坐標(biāo)為(0,11);
②B點的坐標(biāo)為(8,8);
(2)求拋物線的解析式;
(3)已知從某時刻開始的40小時內(nèi),水面與河底ED的距離h(單位:米)隨時間t(單位:時)的變化滿足函數(shù)關(guān)系h=-$\frac{1}{128}$(t-19)2+8(0≤t≤40),且當(dāng)點C到水面的距離不大于5米時,需禁止船只通行,請通過計算說明:在這一時段內(nèi),需多少小時禁止船只通行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.二次函數(shù)y=(x+1)2-4的頂點坐標(biāo)是(  )
A.(-1,-4)B.(1,4)C.(1,-4)D.(-1,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.在射線OM上有三點A,B,C,滿足OA=15cm,AB=30cm,BC=10cm,點P從點O出發(fā),沿OM方向以1cm/s的速度勻速運動;點Q從點C出發(fā),沿線段CO勻速向點O運動(點Q運動到點O時停止運動).如果兩點同時出發(fā),請你回答下列問題:
(1)已知點P和點Q重合時PA=$\frac{2}{3}$AB,求OP的長度;
(2)在(1)題的條件下,求點Q的運動速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.某項工程,甲單獨做需20天完成,乙單獨做需12天完成,甲、乙二人合做6天以后,再由乙繼續(xù)完成,乙再做幾天可以完成全部工程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.計算:
①-1+6+(-2)×($\frac{1}{2}$-$\frac{2}{3}$)
②-$\frac{3}{2}$×[-32÷(-$\frac{3}{2}$)2-2].

查看答案和解析>>

同步練習(xí)冊答案