如圖,拋物線經(jīng)過(guò)點(diǎn)O(0,0),A(4,0),B(5,5),點(diǎn)C是y軸負(fù)半軸上一點(diǎn),直線經(jīng)過(guò)B,C兩點(diǎn),且.

 

(1)求拋物線的解析式;

(2)求直線的解析式;

(3)   過(guò)O,B兩點(diǎn)作直線,如果P是直線OB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PQ平行于y軸,交拋物線于點(diǎn)Q。問(wèn):是否存在點(diǎn)P,使得以P,Q,B為頂點(diǎn)的三角形與△OBC相似?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由。

 

【答案】

 

【解析】(1)依題意設(shè)拋物線解析式為,把B(5,5)代入求得解析式;

(2)過(guò)點(diǎn)B作BD⊥y軸于點(diǎn)D,求出點(diǎn)C的坐標(biāo).設(shè)直線l的解析式為,把點(diǎn)B的坐標(biāo)代入求出k值之后可求出直線的解析式;

(3)首先證明△PBQ∽△OBC根據(jù)線段比求出,然后可知拋物線與直線的交點(diǎn)就是滿足題意的點(diǎn)Q,令求出的坐標(biāo).然后分情況討論點(diǎn)P的坐標(biāo)的位置.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,拋物線經(jīng)過(guò)點(diǎn)A(12,0)、B(-4,0)、C(0,-12).頂點(diǎn)為M,過(guò)點(diǎn)A的直線y=kx-4交y軸于點(diǎn)N.
(1)求該拋物線的函數(shù)關(guān)系式和對(duì)稱軸;
(2)試判斷△AMN的形狀,并說(shuō)明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點(diǎn)D、E(如圖②).當(dāng)直線l平移時(shí)(包括l與直線AN重合),在拋物線對(duì)稱軸上是否存在點(diǎn)P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫(xiě)出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過(guò)點(diǎn)A(-1,0),B(0,-3),C(3,0)三點(diǎn),
(1)求此拋物線的解析式;
(2)若拋物線的頂點(diǎn)為D,求sin∠ACD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•高要市二模)已知:如圖,拋物線經(jīng)過(guò)點(diǎn)O、A、B三點(diǎn),四邊形OABC是直角梯形,其中點(diǎn)A在x軸上,點(diǎn)C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)D為OA的中點(diǎn),動(dòng)點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的路線移動(dòng),若線段PD將梯形OABC的面積分成1﹕3兩部分,求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆北京廣安中學(xué)初三第一學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線經(jīng)過(guò)點(diǎn)A(1,0),與y軸交于點(diǎn)B。

(1)求拋物線的解析式;
(2)P是y軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013學(xué)年吉林省鎮(zhèn)賚縣鎮(zhèn)賚鎮(zhèn)中學(xué)九年級(jí)下第二次綜合測(cè)試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線經(jīng)過(guò)點(diǎn)A(1,0),與軸交于點(diǎn)B.

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)若P是坐標(biāo)軸上一點(diǎn),且三角形PAB是以AB為腰的等腰三角形,試求P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案