已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五個(gè)點(diǎn),拋物線(xiàn)y=a(x-1)2+k(a>0)經(jīng)過(guò)其中的三個(gè)點(diǎn).
(1)求證:C、E兩點(diǎn)不可能同時(shí)在拋物線(xiàn)y=a(x-1)2+k(a>0)上;
(2)點(diǎn)A在拋物線(xiàn)y=a(x-1)2+k(a>0)上嗎?為什么?
(3)求a和k的值.
【答案】分析:(1)由拋物線(xiàn)y=a(x-1)2+k可知,拋物線(xiàn)對(duì)稱(chēng)軸為x=1,而C(-1,2),E(4,2)兩點(diǎn)縱坐標(biāo)相等,應(yīng)該關(guān)于直線(xiàn)x=1對(duì)稱(chēng),但C(-1,2)與對(duì)稱(chēng)軸相距2,E(4,2)與對(duì)稱(chēng)軸相距3,故不可能;
(2)假設(shè)A點(diǎn)在拋物線(xiàn)上,得出矛盾排除A點(diǎn)在拋物線(xiàn)上;
(3)B、D兩點(diǎn)關(guān)于對(duì)稱(chēng)軸x=1對(duì)稱(chēng),一定在拋物線(xiàn)上,另外一點(diǎn)可能是C點(diǎn)或E點(diǎn),分別將C、D或D、E兩點(diǎn)坐標(biāo)代入求a和k的值.
解答:解:(1)∵拋物線(xiàn)y=a(x-1)2+k的對(duì)稱(chēng)軸為x=1,
而C(-1,2),E(4,2)兩點(diǎn)縱坐標(biāo)相等,
由拋物線(xiàn)的對(duì)稱(chēng)性可知,C、E關(guān)于直線(xiàn)x=1對(duì)稱(chēng),
又∵C(-1,2)與對(duì)稱(chēng)軸相距2,E(4,2)與對(duì)稱(chēng)軸相距3,
∴C、E兩點(diǎn)不可能同時(shí)在拋物線(xiàn)上;

(2)假設(shè)點(diǎn)A(1,0)在拋物線(xiàn)y=a(x-1)2+k(a>0)上,
則a(1-1)2+k=0,解得k=0,
因?yàn)閽佄锞(xiàn)經(jīng)過(guò)5個(gè)點(diǎn)中的三個(gè)點(diǎn),
將B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)代入,
得出a的值分別為a=-1,a=,a=-1,a=,
所以?huà)佄锞(xiàn)經(jīng)過(guò)的點(diǎn)是B,D,
又因?yàn)閍>0,與a=-1矛盾,
所以假設(shè)不成立.
所以A不在拋物線(xiàn)上;

(3)將D(2,-1)、C(-1,2)兩點(diǎn)坐標(biāo)代入y=a(x-1)2+k中,得
,
解得,
或?qū)、D兩點(diǎn)坐標(biāo)代入y=a(x-1)2+k中,得

解得,
綜上所述,
點(diǎn)評(píng):本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn).關(guān)鍵是明確圖象上點(diǎn)的坐標(biāo)必須滿(mǎn)足函數(shù)解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖為某班35名學(xué)生在某次社會(huì)實(shí)踐活動(dòng)中揀廢棄的礦泉水瓶情況條形統(tǒng)計(jì)圖,圖中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全.已知此次活動(dòng)中學(xué)生揀到礦泉水瓶個(gè)數(shù)中位數(shù)是5個(gè),則根據(jù)統(tǒng)計(jì)圖,下列選項(xiàng)中的( 。⿺(shù)值無(wú)法確定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知c<0,0<|a|<|b|<|c|,
b2c
a
=-
b
a
ac
,則a、b、c由小到大的順序排列
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD,OA與x軸正半軸夾角為60°,點(diǎn)A的橫坐標(biāo)為2,點(diǎn)C的橫坐標(biāo)為-
3
2
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知方程組
x+y=2
y+z=3
z+x=7
,則x+y+z等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a、b(a≠b)分別滿(mǎn)足a2+2a=2,b2+2b=2.求
1
a
+
1
b
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案