已知二次函數(shù)y=a(x+1)2+m的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C,頂點(diǎn)為M,直線MC的解析式為y=kx-3,且直線MC與x軸交于點(diǎn)N,sin∠BCO=數(shù)學(xué)公式
(1)求直線MC及二次函數(shù)的解析式;
(2)在二次函數(shù)的圖象上是否存在點(diǎn)P(異于點(diǎn)C),使以點(diǎn)P、N、C為頂點(diǎn)的三角形是以NC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

解:(1)由直線MC的解析式y(tǒng)=kx-3,得C(0,-3).
設(shè)OB=t,
∵sin∠BCO===
∴BC=t,則OC=3t.
∵OC=3,∴3t=3,
∴t=1.∴OB=1.
∵點(diǎn)B(1,0),C(0,-3)都在二次函數(shù)的圖象上,
,解得a=1,m=-4,
∴二次函數(shù)的解析式為:y=x2+2x-3.
∵點(diǎn)M(-1,-4)在直線MC上,
∴-4=-k-3即k=1.
∴直線MC的解析式為:y=x-3;

(2)存在這樣的點(diǎn)P.
①由于∠CNO=45°,則N(3,0),在y軸上取點(diǎn)D(0,3),連接ND交拋物線于點(diǎn)P(如圖).
∴PNC=90°.
直線ND的解析式為:y=-x+3.
解方程組,
解得;
②由于點(diǎn)A是二次函數(shù)圖象與x軸的另一交點(diǎn),故A(-3,0).連接AC(如圖),∠ACN=90°,點(diǎn)A就是所求的點(diǎn)
P(-3,0).
綜上,滿足條件的點(diǎn)為P1(-3,0),P2,),P3,).
分析:(1)由直線MC的解析式y(tǒng)=kx-3得C(0,-3),在Rt△BOC中,已知OC=3,解直角三角形求B點(diǎn)坐標(biāo)及m的值,確定M點(diǎn)的坐標(biāo),再求直線MC的解析式;
(2)存在這樣的點(diǎn)P.根據(jù)直線MC的解析式,判斷△CON為等腰直角三角形,再分別過(guò)N、C兩點(diǎn)作直線CN的垂線,與拋物線相交,求垂線的解析式,聯(lián)立垂線解析式與二次函數(shù)解析式,求P點(diǎn)坐標(biāo).
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是運(yùn)用待定系數(shù)法,解直角三角形求直線、拋物線解析式,根據(jù)拋物線上點(diǎn)的坐標(biāo)特點(diǎn),形數(shù)結(jié)合,分類討論求P點(diǎn)坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象過(guò)點(diǎn)A(1,2),B(3,2),C(0,-1),D(2,3).點(diǎn)P(x1,y1),Q(x2,y2)也在該函數(shù)的圖象上,當(dāng)0<x1<1,2<x2<3時(shí),y1與y2的大小關(guān)系正確的是( 。
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,3),頂點(diǎn)坐標(biāo)為(1,4),
(1)求這個(gè)二次函數(shù)的解析式;
(2)求圖象與x軸交點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(3)圖象與y軸交點(diǎn)為點(diǎn)C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莒南縣二模)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;
③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于-1的實(shí)數(shù)根;⑤2a+b=0.其中,正確的說(shuō)法有
②④⑤
②④⑤
.(請(qǐng)寫出所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),已知A點(diǎn)坐標(biāo)為(-1,0),且對(duì)稱軸為直線x=2,則B點(diǎn)坐標(biāo)為
(5,0)
(5,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案