精英家教網 > 初中數學 > 題目詳情

(1)x2-2(x2-y2)-2y2
(2)7a2b-(-4a2b+5ab2)-2(2a2b-3ab2

解:(1)原式=x2-2x2+2y2-2y2
=-x2;

(2)原式=7a2b+4a2b-5ab2-4a2b+6ab2
=7a2b+ab2
分析:(1)原式去括號合并即可得到結果;
(2)原式去括號合并即可得到結果.
點評:此題考查了整式的加減,熟練掌握運算法則是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

把多項式x2-11x+24分解因式,可以采取以下兩種方法:
①將-11x拆成兩項,-6x-5x;將24拆成兩項,9+15,則:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)[(x-3)-5]=(x-3)(x-8).
②添加一個數(
11
2
)2
,再減去這個數(
11
2
)2
,則:x2-11x+24=x2-11x+(
11
2
)2-(
11
2
)2+24=[x2-11x+(
11
2
)
2
]-
25
4
=(x-
11
2
)2-(
5
2
)2=(x-
11
2
+
5
2
)(x-
11
2
-
5
2
)=(x-3)(x-8)

根據上面的啟發(fā),請將多項式x2+4x-12分解因式.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知二次函數y=x2-2mx+4m-8
(1)當x≤2時,函數值y隨x的增大而減小,求m的取值范圍.
(2)以拋物線y=x2-2mx+4m-8的頂點A為一個頂點作該拋物線的內接正三角形AMN(M,N兩點在拋物線上),請問:△AMN的面積是與m無關的定值嗎?若是,請求出這個定值;若不是,請說明理由.
(3)若拋物線y=x2-2mx+4m-8與x軸交點的橫坐標均為整數,求整數m的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

材料:為解方程x4-x2-6=0,可將方程變形為(x22-x2-6=0,
然后設x2=y,則(x22=y2,原方程化為y2-y-6=0…①,
解得y1=-2,y2=3.當y1=-2時,x2=-2無意義,舍去;
當y2=3時,x2=3,解得x=±
3

所以原方程的解為x1=
3
,x2=-
3

問題:(1)在原方程得到方程①的過程中,利用
換元
換元
法達到了降次的目的,體現了
轉化
轉化
 的數學思想;
(2)利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

材料:為解方程x4-x2-6=0,可將方程變形為(x22-x2-6=0,然后設x2=y,則(x22=y2,原方程化為y2-y-6=0…①,
解得y1=-2,y2=3.
當y1=-2時,x2=-2無意義,舍去;當y2=3時,x2=3,解得x=±
3

所以原方程的解為x1=
3
,x2=-
3

問題:利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

閱讀下面例題的解答過程:
例:因式分解:(1)x2+x-2(2)x2-2x-3
解:(1)x2+x-2=x2+(2-1)x-2=x2+2x-x-2
=(x2+2x)-(x+2)=x(x+2)-(x+2)=(x+2)(x-1)
(2)x2-2x-3=x2+(1-3)x-3=x2+x-3x-3
=(x2+x)-(3x+3)=x(x+1)-3(x+1)=(x+1)(x-3)
根據例題提示的因式分解的方法把下列各式分解因式:
(1)x2+3x+2;(2)x2-6x+8.

查看答案和解析>>

同步練習冊答案