已知:拋物線與x軸的兩個交點分別為A(1,0)和B(3,0),與y軸交于點C.
(1)求此二次函數(shù)的解析式;
(2)寫出點C的坐標(biāo)________,頂點D的坐標(biāo)為__________;
(3)將直線CD沿y軸向下平移3個單位長度,求平移后直線m的解析式;
(4)在直線m上是否存在一點E,使得以點E、A、B、C為頂點的四邊形是梯形,如果存在,請直接寫出所有滿足條件的E點的坐標(biāo)__________________________________(不必寫出過程).
(2);(2)(0,3),(2,-1);(3);(4)(-1,2)或(-1.5,3)
解析試題分析:(1)由拋物線過點A(1,0)和B(3,0)根據(jù)待定系數(shù)法列方程組求解即可;
(2)根據(jù)(1)中求得的函數(shù)解析式結(jié)合二次函數(shù)的性質(zhì)求解即可;
(3)先設(shè)CD:,由點C、D的坐標(biāo)根據(jù)待定系數(shù)法即可求得直線CD的解析式,再根據(jù)直線的平移規(guī)律:上加下減,即可求得結(jié)果;
(4)根據(jù)梯形的對邊平行再結(jié)合一次函數(shù)的性質(zhì)求解即可.
試題解析:(1)∵拋物線過點A(1,0)和B(3,0)
∴,解得
∴此二次函數(shù)的解析式為;
(2)在中,當(dāng)x=0時,y=3,所以點C的坐標(biāo)為(0,3)
因為,所以頂點D的坐標(biāo)為(2,-1);
(3)設(shè)CD:
∵圖象過點(0,3),(2,-1)
∴,解得
∴CD:,沿y軸向下平移3個單位長度后直線m的解析式為;
(4)(-1,2)或(-1.5,3).
考點:二次函數(shù)的綜合題
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖①,在Rt△ACB中,∠C=90º,AC=6cm,BC=8cm,點P由B出發(fā)沿BC方向向點C勻速運動,速度為2cm/s;點Q由A出發(fā)沿AB方向向點B勻速運動,速度為1cm/s;連接PQ.若設(shè)運動的時間為t(s)(0<t<4),解答下列問題:
(1)當(dāng)t為何值時,PQ的垂直平分線經(jīng)過點B?
(2)如圖②,連接CQ.設(shè)△PQC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)如圖②,是否存在某一時刻t,使線段C Q恰好把四邊形ACPQ的面積分成1:2的兩部分?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD中,AB=16cm,AD=4cm,點P、Q分別從A、B同時出發(fā),點P在邊AB上沿AB方向以2cm/s的速度勻速運動,點Q在邊BC上沿BC方向以1cm/s的速度勻速運動,當(dāng)其中一點到達終點時,另一點也隨之停止運動.設(shè)運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,平面直角坐標(biāo)系中,以點C(2,)為圓心,以2為半徑的圓與軸交于A、B兩點.
(1)求A、B兩點的坐標(biāo);
(2)若二次函數(shù)的圖象經(jīng)過點A、B,試確定此二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)y=mx2-6x+1(m是常數(shù)).
⑴求證:不論m為何值,該函數(shù)的圖象都經(jīng)過y軸上的一個定點;
⑵若該函數(shù)的圖象與x軸只有一個交點,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=x2–kx+k–1(k>2).
(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點;
(2)拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,若,求拋物線的表達式;
(3)以(2)中的拋物線上一點P(m,n)為圓心,1為半徑作圓,直接寫出:當(dāng)m取何值時,x軸與相離、相切、相交.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商品的進價為每千克40元,銷售單價與月銷售量的關(guān)系如下表(每千克售價不能高于65元):
銷售單價(元) | 50 | 53 | 56 | 59 | 62 | 65 |
月銷售量(千克) | 420 | 360 | 300 | 240 | 180 | 120 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.點E、F同時從B點出發(fā),沿射線BC向右勻速移動.已知F點移動速度是E點移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點移動距離為x(x>0).
⑴△EFG的邊長是___________ (用含有x的代數(shù)式表示),當(dāng)x=2時,點G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時,y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時,y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時,存在最大值,并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com