已知,且,則的值等于          。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點(diǎn),點(diǎn)P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解與應(yīng)用:
如圖,在邊長為3的正方形ABCD中,點(diǎn)E為對角線BD上的一點(diǎn),且BE=BC,F(xiàn)為CE上一點(diǎn),F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試?yán)蒙鲜鼋Y(jié)論求出FM+FN的長.
(2)類比與推理:
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點(diǎn)”放寬為“在三角形內(nèi)任一點(diǎn)”,即:
已知等邊△ABC內(nèi)任意一點(diǎn)P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(3)拓展與延伸:
若正n邊形A1A2…An,內(nèi)部任意一點(diǎn)P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個(gè)定值.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

等邊△ABO在直角坐標(biāo)系中的位置如圖所示,BO邊在x軸上,點(diǎn)B的坐標(biāo)為(-2,0)點(diǎn),反比例函數(shù)y=
k
x
(x<0)經(jīng)過點(diǎn)A.
(1)求這個(gè)反比例函數(shù)的解析式;
精英家教網(wǎng)
(2)如圖,直線y=kx+2
3
與x軸,y軸交于C,D兩點(diǎn),與(1)中的反比例函數(shù)的圖象交于E,F(xiàn)兩點(diǎn),EG⊥x軸于G點(diǎn),F(xiàn)H⊥y軸于H點(diǎn),若△DFH的面積記為S△DFH,已知S△DFH+S△FOE+S△ECG=
7
8
S△COD,求k的值;
精英家教網(wǎng)

(3)如圖,點(diǎn)D為(1)中的等邊△ABO外任意一點(diǎn),且∠ADO=30°,連接AD,OD,BD,則AD2,OD2,BD2之間存在一個(gè)數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC是等邊三角形,點(diǎn)P是AC上一點(diǎn),PE⊥BC于點(diǎn)E,交AB于點(diǎn)F,在CB的延長線上截取BD=PA,PD交AB于點(diǎn)I,PA=nPC.
(1)如圖1,若n=1,則
EB
BD
=
 
FI
ED
=
 
;
(2)如圖2,若∠EPD=60°,試求n和
FI
ED
的值;
(3)如圖3,若點(diǎn)P在AC邊的延長線上,且n=3,其他條件不變,則
EB
BD
=
 
.(只寫答案不寫過程)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧波模擬)已知等邊△ABC和Rt△DEF按如圖所示的位置放置,點(diǎn)B,D重合,且點(diǎn)E、B(D)、C在同一條直線上.其中∠E=90°,∠EDF=30°,AB=DE=6
3
,現(xiàn)將△DEF沿直線BC以每秒
3
個(gè)單位向右平移,直至E點(diǎn)與C點(diǎn)重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)試求出在平移過程中,點(diǎn)F落在△ABC的邊上時(shí)的t值;
(2)試求出在平移過程中△ABC和Rt△DEF重疊部分的面積s與t的函數(shù)關(guān)系式;
(3)當(dāng)D與C重合時(shí),點(diǎn)H為直線DF上一動(dòng)點(diǎn),現(xiàn)將△DBH繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到△ACK,則是否存在點(diǎn)H使得△BHK的面積為4
3
?若存在,試求出CH的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•齊齊哈爾)如圖,蜂巢的橫截面由正六邊形組成,且能無限無縫隙拼接,稱橫截面圖形由全等正多邊形組成,且能無限無縫隙拼接的多邊形具有同形結(jié)構(gòu).
若已知具有同形結(jié)構(gòu)的正n邊形的每個(gè)內(nèi)角度數(shù)為α,滿足:360=kα(k為正整數(shù)),多邊形外角和為360°,則k關(guān)于邊數(shù)n的函數(shù)是
k=
2n
n-2
(n=3,4,6)或k=2+
4
n-2
(n=3,4,6)
k=
2n
n-2
(n=3,4,6)或k=2+
4
n-2
(n=3,4,6)
(寫出n的取值范圍)

查看答案和解析>>

同步練習(xí)冊答案