【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA、EC.

(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;

(2)若點(diǎn)P在線段AB上.

①如圖2,連接AC,當(dāng)PAB的中點(diǎn)時(shí),判斷ACE的形狀,并說明理由;

②如圖3,設(shè)AB=a,BP=b,當(dāng)EP平分∠AEC時(shí),求a:b及∠AEC的度數(shù).

【答案】(1)詳見解析;(2△ACE為直角三角形,理由見解析;(3∠AEC=45°

【解析】試題分析:(1)根據(jù)正方形的性質(zhì)和全等三角形的判定定理易證△APE≌△CFE,由全等三角形的性質(zhì)即可得結(jié)論;(2根據(jù)正方形的性質(zhì)、等腰直角三角形的性質(zhì)即可判定△ACE為直角三角形;根據(jù)PE∥CF,得到,代入a、b的值計(jì)算求出ab,根據(jù)角平分線的判定定理得到∠HCG=∠BCG,證明∠AEC=∠ACB,即可求出∠AEC的度數(shù).

試題解析:(1)證明:四邊形ABCD為正方形

∴AB=AC

四邊形BPEF為正方形

∴∠P=∠F=90°PE=EF=FB=BP

∵AP=AB+BP,CF=BC+BF

∴CF=AP

△APE△CFE中:EP="EF," ∠P="∠F=90°," AP= CF

∴△APE≌△CFE

∴EA=EC

2①∵PAB的中點(diǎn),

∴PA=PB,又PB=PE,

∴PA=PE,

∴∠PAE=45°,又∠DAC=45°,

∴∠CAE=90°,即△ACE是直角三角形;

②∵EP平分∠AEC,EP⊥AG,

∴AP=PG=a﹣b,BG=a﹣2a﹣2b=2b﹣a

∵PE∥CF

,即,

解得,a=b;

GH⊥ACH

∵∠CAB=45°,

∴HG=AG=×2b﹣2b=2﹣b,又BG=2b﹣a=2﹣b,

∴GH=GBGH⊥AC,GB⊥BC,

∴∠HCG=∠BCG,

∵PE∥CF,

∴∠PEG=∠BCG

∴∠AEC=∠ACB=45°

∴ab=1;∴∠AEC=45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(0.125)2015×(﹣8)2016的結(jié)果等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知該公司每天能精加工蔬菜6噸或粗加工蔬菜16噸(兩種加工不能同時(shí)進(jìn)行),某蔬菜公司收購(gòu)蔬菜進(jìn)行銷售的獲利情況如下表所示:

銷售方式

直接銷售

粗加工后銷售

精加工后銷售

每噸獲利(元)

100

250

450

(1)現(xiàn)在該公司收購(gòu)了140噸蔬菜,如果要求在18天內(nèi)全部銷售完這140噸蔬菜,請(qǐng)完成下列表格:

銷售方式

全部直接銷售

全部粗加工后銷售

盡量精加工,剩余部分直接銷售

獲利(元)

(2)如果先進(jìn)行精加工,然后進(jìn)行粗加工,要求15天剛好加工完140噸蔬菜,則應(yīng)如何分配加工時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某樓盤2016年房?jī)r(jià)為每平方米15600元,經(jīng)過兩年連續(xù)降價(jià)后,2018年房?jī)r(jià)為每平方米12400元。設(shè)該樓盤這兩年房?jī)r(jià)每年平均降低率為x,根據(jù)題意可列方程為(

A. 15600(1-2x)=12400 B. 2×15600(1-2x)=12400

C. 15600(1-x)2=12400 D. 15600(1-x2)=12400

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形A1B1C1是由三角形ABC平移后得到的,已知三角形ABC中任意一點(diǎn)P(x0,y0)經(jīng)平移后對(duì)應(yīng)點(diǎn)為P1(x0-6,y0-2).

(1)已知A(2,6),B(1,3),C(5,3),Q(3,5),請(qǐng)寫出A1,B1,C1,Q1的坐標(biāo);

(2)試說明三角形A1B1C1是如何由三角形ABC得到的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若am=2,an=3,則am+n等于 ( )
A.5
B.6
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品原價(jià)每件m元,第一次降價(jià)打八折,第二次再次降價(jià)每件減10元,第二次降價(jià)后的售價(jià)(

A. 0.8m B. 0.8m-10)元C. 0.8m-10)元D. m-10)元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列二次函數(shù)中,頂點(diǎn)坐標(biāo)為(-5,0),且開口方向、形狀與y=-x2的圖象相同的是(

A.y=(x52B.yx25C.y=-(x52D.y=(x52

查看答案和解析>>

同步練習(xí)冊(cè)答案