已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過(guò)D點(diǎn)作DE⊥AC于E.
(1)試判斷DE是否是⊙O的切線,并說(shuō)明理由;
(2)若tanB=數(shù)學(xué)公式,DE=4數(shù)學(xué)公式,求⊙O的直徑.

解:(1)DE是⊙O的切線.
理由如下:
如圖,連接OD,
∵AB=AC,
∴∠B=∠C.
∵OB=OD,
∴∠B=∠BDO,
∴∠C=∠BDO,
∴OD∥AC.
∵DE⊥AC,
∴OD⊥DE,
∵OD是⊙O的半徑,
∴DE是⊙O的切線;

(2)如圖,連接AD,
∵∠B=∠C,tanB=,
∴tanC=,
∴∠C=30°.
在Rt△DEC中
∵sinC=sin30°=
∴CD=2DE=8,
在Rt△ADC中
∵cosC=cos30°=
,
∴AC=16.
∴直徑AB=16.
分析:(1)要證DE是⊙O的切線,只要連接OD,再利用已知條件證∠ODE=90°即可;
(2)根據(jù)三角函數(shù)求出CD,AC的長(zhǎng),由于AC=AB,即得出了直徑的長(zhǎng)度.
點(diǎn)評(píng):本題考查了切線的判定及解直角三角形等知識(shí)點(diǎn)的掌握情況.要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案