已知△ABC的三個(gè)內(nèi)角滿(mǎn)足:∠A:∠B:∠C=1:2:3,則這是一個(gè)


  1. A.
    銳角三角形
  2. B.
    直角三角形
  3. C.
    鈍角三角形
  4. D.
    無(wú)法確定
B
分析:根據(jù)比例設(shè)∠A、∠B、∠C分別為k、2k、3k,然后根據(jù)三角形內(nèi)角和定理列式進(jìn)行計(jì)算求出k值,再求出最大的角∠C即可得解.
解答:設(shè)∠A、∠B、∠C分別為k、2k、3k,
則k+2k+3k=180°,
解得k=30°,
所以,最大的角∠C=3×30°=90°,
所以,這個(gè)三角形是直角三角形.
故選B.
點(diǎn)評(píng):本題考查了三角形的內(nèi)角和定理,利用“設(shè)k法”求解更加簡(jiǎn)便.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,已知:△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線(xiàn)的函數(shù)解析式;
(2)在△AOB內(nèi)可以作一個(gè)正方形CDEF,使它的三個(gè)頂點(diǎn)分別落在邊AO、AB上,E、F兩個(gè)頂點(diǎn)落在OB上,請(qǐng)求出這個(gè)正方形四個(gè)頂瞇的坐標(biāo),并在圖中畫(huà)出這個(gè)正方形;
(3)連接OC,在線(xiàn)段OC上任取一點(diǎn)P,過(guò)P作與x軸、y軸的不行線(xiàn)與OA、OB分別交于M、N兩點(diǎn),過(guò)M作OB邊的垂線(xiàn)與OB交于H;你有什么發(fā)現(xiàn)?請(qǐng)寫(xiě)出來(lái),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點(diǎn)P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長(zhǎng)是
 

精英家教網(wǎng)
(2)閱讀材料:如圖,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線(xiàn)垂直的三條直線(xiàn),外側(cè)兩條直線(xiàn)之間的距離叫△ABC的“水平寬”(a),中間的這條直線(xiàn)在△ABC內(nèi)部線(xiàn)段的長(zhǎng)度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
1
2
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
精英家教網(wǎng)
解答下列問(wèn)題:
如圖,拋物線(xiàn)頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
①求拋物線(xiàn)和直線(xiàn)AB的解析式;
②點(diǎn)P是拋物線(xiàn)(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB
③點(diǎn)P是拋物線(xiàn)(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=
9
8
S△CAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知△ABC在坐標(biāo)平面內(nèi)三頂點(diǎn)的坐標(biāo)分別為A(0,2)、B(3,3)、C(2,1).以B為位似中心,畫(huà)出△Α1Β1С1與△ABC相似(與圖形同向),且相似比是2的三角形,它的三個(gè)對(duì)應(yīng)頂點(diǎn)的坐標(biāo)分別是:
Α1
-3
,
1
);B1
3
,
3
);С1
1
,
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,拋物線(xiàn)y=ax2-5ax+4經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),已知BC∥x軸,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且AC=BC.
(1)求拋物線(xiàn)的解析式;

(2)若點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上且在x軸下方的動(dòng)點(diǎn),是否存在△PAB是等腰三角形,若存在,求出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,將△AOC沿x軸對(duì)折得到△AOC1,再將△AOC1繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)180°后得△A1O1C2(A,O,C1分別與點(diǎn)A1,O1,C2對(duì)應(yīng))使點(diǎn)A1,C2在拋物線(xiàn)上,求A1,C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖:在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),△ABC的三個(gè)頂點(diǎn)坐精英家教網(wǎng)標(biāo)分別是A(1,2
3
),B(-3,0),C(3,0),直線(xiàn)AC與反比例函數(shù)y=
k
x
在第一象限內(nèi)的圖象相交于A,M兩點(diǎn).
(1)求反比例函數(shù)y=
k
x
的解析式;
(2)連接BM交AO于點(diǎn)N,求證:N是△ABC的重心;
(3)在直線(xiàn)AC上是否存在一點(diǎn)P使△BPO的周長(zhǎng)L取得最小值?若存在,求出L的最小值并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案