閱讀下面問(wèn)題的解決過(guò)程:
問(wèn)題:已知△ABC中,P為BC邊上一定點(diǎn),過(guò)點(diǎn)P作一直線(xiàn),使其等分△ABC的面積.
解決:
情形1:如圖①,若點(diǎn)P恰為BC的中點(diǎn),作直線(xiàn)AP即可.
情形2:如圖②,若點(diǎn)P不是BC的中點(diǎn),則取BC的中點(diǎn)D,連接AP,
過(guò)點(diǎn)D作DE∥AP交AC于E,作直線(xiàn)PE,直線(xiàn)PE即為所求直線(xiàn).
問(wèn)題解決:
如圖③,已知四邊形ABCD,過(guò)點(diǎn)B作一直線(xiàn)(不必寫(xiě)作法),使其等分四邊形ABCD的面積,并證明.
【答案】分析:根據(jù)取對(duì)角線(xiàn)AC的中點(diǎn)O,得出折線(xiàn)BOD能平分四邊形ABCD的面積,再利用OE∥BD,得出S△BEC=S四邊形ABED即可得出答案.
解答:解:如圖③,取對(duì)角線(xiàn)AC的中點(diǎn)O,連接BO、DO,BD(2分),
∴折線(xiàn)BOD能平分四邊形ABCD的面積(3分),
過(guò)點(diǎn)O作OE∥BD交CD于E(4分),
∵S△BOE=S△DOE(或∵S△BDE=S△BDO)(6分),
∴S△BOG=S△DGE(7分),∴S△BEC=S四邊形ABED

∴直線(xiàn)BE即為所求直線(xiàn)(8分).
點(diǎn)評(píng):此題主要考查了應(yīng)用與設(shè)計(jì)作圖以及平行線(xiàn)之間的距離和三角形的面積等知識(shí),根據(jù)已知得出S△BOG=S△DGE是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

25、閱讀下面問(wèn)題的解決過(guò)程:
問(wèn)題:已知△ABC中,P為BC邊上一定點(diǎn),過(guò)點(diǎn)P作一直線(xiàn),使其等分△ABC的面積.
解決:
情形1:如圖①,若點(diǎn)P恰為BC的中點(diǎn),作直線(xiàn)AP即可.
情形2:如圖②,若點(diǎn)P不是BC的中點(diǎn),則取BC的中點(diǎn)D,連接AP,
過(guò)點(diǎn)D作DE∥AP交AC于E,作直線(xiàn)PE,直線(xiàn)PE即為所求直線(xiàn).
問(wèn)題解決:
如圖③,已知四邊形ABCD,過(guò)點(diǎn)B作一直線(xiàn)(不必寫(xiě)作法),使其等分四邊形ABCD的面積,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年北京市石景山區(qū)初三數(shù)學(xué)一模試卷及答案 題型:044

閱讀下面問(wèn)題的解決過(guò)程:

問(wèn)題解決:

如圖③,已知四邊形ABCD,過(guò)點(diǎn)B作一直線(xiàn)(不必寫(xiě)作法),使其等分四邊形ABCD的面積,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年北京市石景山區(qū)初三一模數(shù)學(xué)試卷 題型:047

閱讀下面問(wèn)題的解決過(guò)程:

問(wèn)題解決:

如圖,已知四邊形ABCD,過(guò)點(diǎn)B作一直線(xiàn)(不必寫(xiě)作法),使其等分四邊形ABCD的面積,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀下面問(wèn)題的解決過(guò)程:
問(wèn)題:已知△ABC中,P為BC邊上一定點(diǎn),過(guò)點(diǎn)P作一直線(xiàn),使其等分△ABC的面積.
解決:
情形1:如圖①,若點(diǎn)P恰為BC的中點(diǎn),作直線(xiàn)AP即可.
情形2:如圖②,若點(diǎn)P不是BC的中點(diǎn),則取BC的中點(diǎn)D,連接AP,
過(guò)點(diǎn)D作DE∥AP交AC于E,作直線(xiàn)PE,直線(xiàn)PE即為所求直線(xiàn).
問(wèn)題解決:
如圖③,已知四邊形ABCD,過(guò)點(diǎn)B作一直線(xiàn)(不必寫(xiě)作法),使其等分四邊形ABCD的面積,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案