精英家教網 > 初中數學 > 題目詳情
(2010•荊州)如圖,在△ABC中,∠B=45°,cos∠C=,AC=5a,則△ABC的面積用含a的式子表示是   
【答案】分析:過A作BC的垂線,在構建的兩個直角三角形中,通過解直角三角形求出BC的長以及BC邊上的高,從而根據三角形的面積公式求出△ABC的面積表達式.
解答:解:過A作AD⊥BC于D.
在Rt△ACD中,AC=5a,cosC=
∴CD=AC•cosC=3a,AD==4a.
在Rt△ABD中,AD=4a,∠B=45°,
∴BD=AD=4a.
∴BC=BD+CD=4a+3a=7a.
故S△ABC=BC•AD=×7a×4a=14a2
點評:本題考查的是解直角三角形的應用,當兩個直角三角形擁有公共邊時,先求出這條公共邊是解答此類題的一般思路.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•荊州)如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數關系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《四邊形》(08)(解析版) 題型:解答題

(2010•荊州)如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數關系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《三角形》(13)(解析版) 題型:解答題

(2010•荊州)如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數關系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數學 來源:2010年湖北省荊州市中考數學試卷(解析版) 題型:解答題

(2010•荊州)如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數關系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數學 來源:2010年湖北省荊州市中考數學試卷(解析版) 題型:填空題

(2010•荊州)如圖,在平行四邊形ABCD中,∠A=130°,在AD上取DE=DC,則∠ECB的度數是    度.

查看答案和解析>>

同步練習冊答案