已知sinα=,α為銳角,則tanα的值為( )
A.
B.
C.
D.
【答案】分析:根據(jù)題意,由sin2a+cos2α=1,可得cosα的值,進而由tanα=可得答案.
解答:解:根據(jù)題意,sinα=,α為銳角,
則cosα=
∴tanα==
故選C.
點評:本題考查同角三角函數(shù)的基本關(guān)系,有sin2a+cos2α=1,tanα=等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 60°的值為( B。
A.
1
2
;B.1;C.
3
2
;D.2
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)學習過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad60°的值為(  )A.
1
2
  B.1  C.
3
2
D.2
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知sinα•cosα=
1
8
,且0°<α<45°,則cosα-sinα的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知sinαcosα=
1
8
,且0°<α<45°,則sinα-cosα的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:022

已知sinα,且α為銳角,則cos(90°-α)=_________,cosα_________

 

查看答案和解析>>

同步練習冊答案