(2011•自貢)如圖,一根木棒(AB)長為2a,斜靠在與地面(OM)垂直的墻壁(ON)上,與地面的傾斜角(∠ABO)為60°,當木棒A端沿N0向下滑動到A′,AA′=(
3
-
2
)a
,B端沿直線OM向右滑動到B′,則木棒中點從P隨之運動到P′所經過的路徑長為
1
12
1
12
分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到OP=
1
2
AB=
1
2
A′B′=OP′,即P是隨之運動所經過的路線是一段圓;在Rt△AOB中,根據(jù)含30度的直角三角形三邊的關系得到∠AOP=30°,OA=
3
a,則易求出OA′=OA-AA′=
2
a,即可得到△A′OB′為等腰直角三角形,得到∠A′B′O=45°,則∠POP′=∠A′OP′-∠AOP=15°,然后根據(jù)弧長公式計算即可.
解答:解:連接OP、OP′,如圖,
∵ON⊥OM,P為AB中點,
∴OP=
1
2
AB=
1
2
A′B′=OP′,
∵AB=2a
∴OP=a,
當A端下滑B端右滑時,AB的中點P到O的距離始終為定長a,
∴P是隨之運動所經過的路線是一段圓弧,
∵∠ABO=60°,
∴∠AOP=30°,OA=
3
a,
∵AA′=(
3
-
2
)a,OA′=OA-AA′=
2
a,
∴sin∠A′B′O=
OA′
A′B′
=
2
2
,
∴∠A′B′O=45°,
∴∠A′OP'=45°
∴∠POP′=∠A′OP′-∠AOP=15°,
∴弧PP′的長=
15•π•a
180
=
1
12
πa,
即P點運動到P′所經過路線PP′的長為
1
12
πa.
故答案為:
1
12
πa
點評:本題考查了弧長公式:l=
n•π•R
180
(n為弧所對的圓心角的度數(shù),R為半徑).也考查了直角三角形斜邊上的中線等于斜邊的一半以及含30度的直角三角形三邊的關系和等腰直角三角形的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•自貢)如圖是4×4正方形網格,其中已有3個小方格涂成了黑色.現(xiàn)在要從其余13個白色小方格中選出一個也涂成黑色,使整個涂成黑色的圖形成為軸對稱圖形,這樣的白色小方格有
4
4
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•自貢)如圖,點B,C在∠SAF的兩邊上.且AB=AC.
(1)請按下列語句用尺規(guī)畫出圖形(不寫畫法,保留作圖痕跡).
①AN⊥BC,垂足為N;
②∠SBC的平分線交AN延長線于M;
③連接CM.
(2)該圖中有
3
3
對全等三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•自貢)如圖,在△ABC中,AB=BC=1,∠ABC=120°,將△ABC繞點B順時針旋轉30°得△A1BC1.A1B交AC于點E,A1C1分別交AC,BC于點D,F(xiàn).
(1)試判斷四邊形BC1DA的形狀,并說明理由;
(2)求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•自貢)如圖,在平面直角坐標系中,半徑為1的⊙B經過坐標原點0,且與x軸、y軸分別交于A,C兩點,過O作⊙B的切線與AC的延長線交于點D.已知點A的坐標為(
3
,0).
(1)求sin∠CAO的值;
(2)若反比例函數(shù)的圖象經過點D,求該反比例函數(shù)的解析式.

查看答案和解析>>

同步練習冊答案