【題目】如圖,在平面直角坐標(biāo)系中,直線l1y=x與直線l2交點(diǎn)A的橫坐標(biāo)為2,將直線l1沿y軸向下平移4個(gè)單位長(zhǎng)度,得到直線l3,直線l3y軸交于點(diǎn)B,與直線l2交于點(diǎn)C,點(diǎn)C的縱坐標(biāo)為-2.直線l2y軸交于點(diǎn)D

1)求直線l2的解析式;

2)求BDC的面積.

【答案】1)直線l2的解析式為y=-x+4;(216.

【解析】

1)把x=2代入y=x,得y=1,求出A2,1).根據(jù)平移規(guī)律得出直線l3的解析式為y=x-4,求出B0,-4)、C4,-2).設(shè)直線l2的解析式為y=kx+b,將A、C兩點(diǎn)的坐標(biāo)代入,利用待定系數(shù)法即可求出直線l2的解析式;

2)根據(jù)直線l2的解析式求出D04),得出BD=8,再利用三角形的面積公式即可求出BDC的面積.

1)把x=2代入y=x,得y=1,

A的坐標(biāo)為(2,1).

∵將直線l1沿y軸向下平移4個(gè)單位長(zhǎng)度,得到直線l3,

∴直線l3的解析式為y=x-4,

x=0時(shí),y=-4,

B0-4).

y=-2代入y=x-4,得x=4,

∴點(diǎn)C的坐標(biāo)為(4-2).

設(shè)直線l2的解析式為y=kx+b,

∵直線l2過(guò)A21)、C4-2),

,解得

∴直線l2的解析式為y=-x+4;

2)∵y=-x+4,

x=0時(shí),y=4,

D0,4).

B0,-4),

BD=8,

∴△BDC的面積=×8×4=16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:RtABC中,∠C90°,ACBC2,將一塊三角尺的直角頂點(diǎn)與斜邊AB的中點(diǎn)M重合,當(dāng)三角尺繞著點(diǎn)M旋轉(zhuǎn)時(shí),兩直角邊始終保持分別與邊BCAC交于D,E兩點(diǎn)(D、E不與B、A重合).

1)求證:MDME

2)求四邊形MDCE的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(1,0)、B(3,0).拋物線y=x2﹣2mx+m2﹣4的頂點(diǎn)為P,與y軸的交點(diǎn)為Q.

(1)填空:點(diǎn)P的坐標(biāo)為;點(diǎn)Q的坐標(biāo)為(均用含m的代數(shù)式表示)
(2)當(dāng)拋物線經(jīng)過(guò)點(diǎn)A時(shí),求點(diǎn)Q的坐標(biāo).
(3)連接QA、QB,設(shè)△QAB的面積為S,當(dāng)拋物線與線段AB有公共點(diǎn)時(shí),求S與m之間的函數(shù)關(guān)系式.
(4)點(diǎn)P、Q不重合時(shí),以PQ為邊作正方形PQMN(P、Q、M、N分別按順時(shí)針?lè)较蚺帕校?dāng)正方形PQMN的四個(gè)頂點(diǎn)中,位于x軸兩側(cè)或y軸兩側(cè)的頂點(diǎn)個(gè)數(shù)相同時(shí),直接寫出此時(shí)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】相傳,大禹治水時(shí),洛水中出現(xiàn)了一個(gè)神龜背上有美妙的圖案,史稱洛書(shū),用現(xiàn)在的數(shù)字翻譯出來(lái),就是三階幻方.三階幻方是最簡(jiǎn)單的幻方,又叫九宮格,它是由九個(gè)數(shù)字組成的一個(gè)三行三列的矩陣.其對(duì)角線、橫行、縱向的數(shù)字之和均相等,這個(gè)和叫做幻和,正中間那個(gè)數(shù)叫中心數(shù),如圖(1)是由、、、、、、、所組成的一個(gè)三階幻方,其幻和為,中心數(shù)為.如圖(2)是一個(gè)新三階幻方,該新三階幻方的幻和為倍,且,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,等邊三角形ABC放置在平面直角坐標(biāo)系中,已知A(0,0)、B(6,0),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo)及反比例函數(shù)的解析式.
(2)將等邊△ABC向上平移n個(gè)單位,使點(diǎn)B恰好落在雙曲線上,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小穎為媽媽準(zhǔn)備了一份生日禮物,禮物外包裝盒為長(zhǎng)方體形狀,長(zhǎng)、寬、高分別為、,為了美觀,小穎決定在包裝盒外用絲帶打包裝飾,她發(fā)現(xiàn),可以用如圖所示的三種打包方式,所需絲帶的長(zhǎng)度分別為,(不計(jì)打結(jié)處絲帶長(zhǎng)度)

1)用含、、的代數(shù)式分別表示,,

2)方法簡(jiǎn)介:

要比較兩數(shù)大小,我們可以將作差,結(jié)果可能出現(xiàn)三種情況:

,則;

,則

,則

我們將這種比較大小的方法叫做作差法

請(qǐng)幫小穎選出最節(jié)省絲帶的打包方式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的解析式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),當(dāng)△PBQ存在時(shí),求運(yùn)動(dòng)多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時(shí),在BC下方的拋物線上存在點(diǎn)K,使SCBK:SPBQ=5:2,求K點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)A表示3街與5大道的十字路口,點(diǎn)B表示5街與3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由AB的一條路徑,那么你能用同樣的方法寫出由AB的其他幾條路徑嗎?請(qǐng)至少給出3種不同的路徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,成都市青羊區(qū)有一塊長(zhǎng)為米,寬為米的長(zhǎng)方形地塊,角上有四個(gè)邊長(zhǎng)均為米的小正方形空地,開(kāi)發(fā)商計(jì)劃將陰影部分進(jìn)行綠化.

1)用含,的代數(shù)式表示綠化的面積是多少平方米?(結(jié)果寫成最簡(jiǎn)形式)

2)若,,求出綠化面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案