如圖,AD是△ABC的中線,E是AD上的一點,且AE=數(shù)學(xué)公式AD,CE交AB于點F.若AF=1cm,則AB=cm.


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6
C
分析:作DG∥CF于G,根據(jù)平行線等分線段定理及平行線分線段成比例定理可得到AG,F(xiàn)G的長,從而也就求得了AB的長.
解答:解:作DG∥CF于G,根據(jù)平行線等分線段定理,得BG=FG,
根據(jù)平行線分線段成比例定理,
得:=,
AG=3AF=3×1=3cm,則FG=AG-AF=3-1=2cm,
所以AB=2+3=5cm.
故選C.
點評:本題考查了平行線分線段成比例定理及三角形中位線定理,熟練運用平行線等分線段定理以及平行線分線段成比例定理是解決此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關(guān)系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC是角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G,則AD與EF的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為( 。

查看答案和解析>>

同步練習(xí)冊答案