【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,求AA′的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)若BC=6,tan∠CDA=,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖所示直線y=kx+2(k≠0)與反比例函數(shù)y=(m≠0)分別交于點(diǎn)P,與y軸、x軸分別交于點(diǎn)A和點(diǎn)B,且cos∠ABO=,過(guò)P點(diǎn)作x軸的垂線交于點(diǎn)C,連接AC,
(1)求一次函數(shù)的解析式.
(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AA1,A1A2,A2A3,A3B,AB分別是五個(gè)半圓的直徑,兩只小蟲(chóng)同時(shí)出發(fā),以相同的速度從點(diǎn)A到點(diǎn)B,甲蟲(chóng)沿ADA1,A1EA2,A2FA3,A3GB路線爬行,乙蟲(chóng)沿ACB路線爬行,則下列結(jié)論正確的是( )
A. 甲先到點(diǎn)B B. 乙先到點(diǎn)B C. 甲、乙同時(shí)到點(diǎn)B D. 無(wú)法確定誰(shuí)先到點(diǎn)B
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD·AB;
(3)若⊙O的半徑為2,∠ACD=300,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“四書(shū)五經(jīng)”是中國(guó)的“圣經(jīng)”,“四書(shū)五經(jīng)”是《大學(xué)》、《中庸》、《論語(yǔ)》和《孟子》(四書(shū))及《詩(shī)經(jīng)》、《尚書(shū)》、《易經(jīng)》、《禮記》、《春秋》(五經(jīng))的總稱(chēng),這是一部被中國(guó)人讀了幾千年的教科書(shū),包含了中國(guó)古代的政治理想和治國(guó)之道,是我們了解中國(guó)古代社會(huì)的一把鑰匙 . 某學(xué)校計(jì)劃分階段引導(dǎo)學(xué)生讀這些書(shū),先購(gòu)買(mǎi)《論語(yǔ)》和《孟子》供學(xué)生閱讀 . 已知用500元購(gòu)買(mǎi)《孟子》的數(shù)量和用800元購(gòu)買(mǎi)《論語(yǔ)》的數(shù)量相同,《孟子》的單價(jià)比《論語(yǔ)》的單價(jià)少15元 . 求《論語(yǔ)》和《孟子》這兩種書(shū)的單價(jià)各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的半徑均為.
請(qǐng)?jiān)趫D①中畫(huà)出弦,,使圖①為軸對(duì)稱(chēng)圖形而不是中心對(duì)稱(chēng)圖形;請(qǐng)?jiān)趫D②中畫(huà)出弦,,使圖②仍為中心對(duì)稱(chēng)圖形;
如圖③,在中,,且與交于點(diǎn),夾角為銳角.求四邊形的面積(用含,的式子表示);
若線段,是的兩條弦,且,你認(rèn)為在以點(diǎn),,,為頂點(diǎn)的四邊形中,是否存在面積最大的四邊形?請(qǐng)利用圖④說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是一座拋物線形拱橋,P 處有一照明燈,水面OA 寬4 m.從O,A 兩處觀測(cè)P 處,仰角分別為α,β,且tanα= ,tanβ=.以O 為原點(diǎn),OA 所在直線為x 軸建立平面直角坐標(biāo)系.
(1)求點(diǎn)P的坐標(biāo);
(2)若水面上升1 m,則水面寬多少米( 取1.41,結(jié)果精確到0.1 m)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一水壩的橫斷面是梯形,下底長(zhǎng),斜坡的坡度為,另一腰與下底的交角為,且長(zhǎng)為,求它的上底的長(zhǎng)(精確到)(.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com