(2013•河南)如圖,在等邊三角形ABC中,BC=6cm.射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF;
(2)填空:
①當(dāng)t為
6
6
s時(shí),四邊形ACFE是菱形;
②當(dāng)t為
1.5
1.5
s時(shí),以A、F、C、E為頂點(diǎn)的四邊形是直角梯形.
分析:(1)由題意得到AD=CD,再由AG與BC平行,利用兩直線平行內(nèi)錯(cuò)角相等得到兩對(duì)角相等,利用AAS即可得證;
(2)①若四邊形ACFE是菱形,則有CF=AC=AE=6,由E的速度求出E運(yùn)動(dòng)的時(shí)間即可;
②分兩種情況考慮:若CE⊥AG,此時(shí)四點(diǎn)構(gòu)成三角形,不是直角梯形;若AF⊥BC,求出BF的長(zhǎng)度及時(shí)間t的值.
解答:(1)證明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D為AC的中點(diǎn),
∴AD=CD,
∵在△ADE和△CDF中,
∠EAD=∠DCF
∠AED=∠DFC
AD=CD
,
∴△ADE≌△CDF(AAS);

(2)解:①若四邊形ACFE是菱形,則有CF=AC=AE=6,
則此時(shí)的時(shí)間t=6÷1=6(s);
②四邊形AFCE為直角梯形時(shí),
(I)若CE⊥AG,則AE=3,BF=3×2=6,即點(diǎn)F與點(diǎn)C重合,不是直角梯形.
(II)若AF⊥BC,
∵△ABC為等邊三角形,
∴F為BC中點(diǎn),即BF=3,
∴此時(shí)的時(shí)間為3÷2=1.5(s);
點(diǎn)評(píng):此題考查了菱形的判定,全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),以及直角梯形,弄清題意是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河南)如圖是正方體的一種展開圖,其每個(gè)面上都標(biāo)有一個(gè)數(shù)字,那么在原正方體中,與數(shù)字“2”相對(duì)的面上的數(shù)字是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河南)如圖,CD是⊙O的直徑,弦AB⊥CD于點(diǎn)G,直線EF與⊙O相切于點(diǎn)D,則下列結(jié)論中不一定正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河南)如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處.當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為
3
2
或3
3
2
或3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河南)如圖,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3).雙曲線y=
kx
(x>0)的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是OC邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案