C
分析:①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:證△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:證△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:證△EBO≌△DCO,推出∠EBO=∠DCO,OB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.
解答:有①②,①③,②④,③④,共4種,
①②,
理由是:∵OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
∴AB=AC,
即△ABC是等腰三角形;
①③,
理由是:∵在△EBO和△DCO中
,
∴△EBO≌△DCO,
∴∠EBO=∠DCO,
∵∠OBC=∠OCB(已證),
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
②④,
理由是:∵在△EBO和△DCO中
,
∴△EBO≌△DCO,
∴OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
③④,
理由是:∵在△EBO和△DCO中
,
∴△EBO≌△DCO,
∴∠EBO=∠DCO,OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
故選C.
點評:本題考查了等腰三角形的性質和判定,全等三角形的性質和判定的應用,通過做此題培養(yǎng)了學生的推理能力和辨析能力,題目比較好,但是一道比較容易出錯的題目.