【題目】已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(﹣1,0)、B(3,0),且與y軸交于點(diǎn)C,拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)點(diǎn)P是y軸正半軸上的一個(gè)動(dòng)點(diǎn),連結(jié)DP,將線段DP繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,點(diǎn)P的對(duì)應(yīng)點(diǎn)E恰好落在拋物線上,求出此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)M(m,n)是拋物線上的一個(gè)動(dòng)點(diǎn),連接MD,把MD2表示成自變量n的函數(shù),并求出MD2取得最小值時(shí)點(diǎn)M的坐標(biāo).
【答案】(1)y=﹣x2+2x+3;(2)點(diǎn)P的坐標(biāo)為(0,1+);(3)MD2=n2﹣n+4;點(diǎn)M的坐標(biāo)為( ,)或(,).
【解析】
(1)根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;(2)過點(diǎn)E作EF⊥x軸于點(diǎn)F,根據(jù)旋轉(zhuǎn)的性質(zhì)及同角的余角相等,可證出△ODP≌△FED(AAS),由拋物線的解析式可得出點(diǎn)D的坐標(biāo),進(jìn)而可得出OD的長(zhǎng)度,利用全等三角形的性質(zhì)可得出EF的長(zhǎng)度,再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出DF,OP的長(zhǎng),結(jié)合點(diǎn)P在y軸正半軸即可得出點(diǎn)P的坐標(biāo);(3)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出m2﹣2m=3﹣n,根據(jù)點(diǎn)D,M的坐標(biāo),利用兩點(diǎn)間的距離公式可得出MD2=n2﹣n+4,利用配方法可得出當(dāng)MD2取得最小值時(shí)n的值,再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出當(dāng)MD2取得最小值時(shí)點(diǎn)M的坐標(biāo).
(1)將A(﹣1,0),B(3,0)代入y=ax2+bx+3,得:,
解得:,
∴拋物線的解析式為y=﹣x2+2x+3.
(2)過點(diǎn)E作EF⊥x軸于點(diǎn)F,如圖所示.
∵∠OPD+∠ODP=90°,∠ODP+∠FDE=90°,
∴∠OPD=∠FDE.
在△ODP和△FED中,,
∴△ODP≌△FED(AAS),
∴DF=OP,EF=DO.
∵拋物線的解析式為y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴點(diǎn)D的坐標(biāo)為(1,0),
∴EF=DO=1.
當(dāng)y=1時(shí),﹣x2+2x+3=1,
解得:x1=1﹣(舍去),x2=1+,
∴DF=OP=1+,
∴點(diǎn)P的坐標(biāo)為(0,1+).
(3)∵點(diǎn)M(m,n)是拋物線上的一個(gè)動(dòng)點(diǎn),
∴n=﹣m2+2m+3,
∴m2﹣2m=3﹣n.
∵點(diǎn)D的坐標(biāo)為(1,0),
∴MD2=(m﹣1)2+(n﹣0)2=m2﹣2m+1+n2=3﹣n+1+n2=n2﹣n+4.
∵n2﹣n+4=(n﹣)2+,
∴當(dāng)n=時(shí),MD2取得最小值,此時(shí)﹣m2+2m+3=,
解得:m1=,m2=.
∴MD2=n2﹣n+4,
當(dāng)MD2取得最小值時(shí),點(diǎn)M的坐標(biāo)為(,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有4個(gè)質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有3,4,5,x,甲乙兩人每次同時(shí)從袋中各隨機(jī)摸出1個(gè)小球,并計(jì)算摸出的這2個(gè)小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn),試驗(yàn)數(shù)據(jù)如圖:
解答下列問題:
(1)如果試驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”的頻率將穩(wěn)定在它的概率附近,估計(jì)出現(xiàn)“和為8”的概率是 .
(2)如果摸出的這兩個(gè)小球上的數(shù)字之和為9的概率是,那么x的值可以取7嗎?請(qǐng)用列表法或畫樹狀圖法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,點(diǎn)E在AD邊上運(yùn)動(dòng),且不與點(diǎn)A和點(diǎn)D重合,連結(jié)CE,過點(diǎn)C作CF⊥CE交AB的延長(zhǎng)線于點(diǎn)F,EF交BC于點(diǎn)G.
(1)求證:△CDE≌△CBF;
(2)當(dāng)DE=時(shí),求CG的長(zhǎng);
(3)連結(jié)AG,在點(diǎn)E運(yùn)動(dòng)過程中,四邊形CEAG能否為平行四邊形?若能,求出此時(shí)DE的長(zhǎng);若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列結(jié)論中,正確結(jié)論的有( 。﹤(gè).
①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx2-2mx-3m(m>0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)M為拋物線的頂點(diǎn),且OC=OB.
(1)求拋物線的解析式.
(2)若拋物線上有一點(diǎn)P,連PC交線段BM于Q點(diǎn),且S△BPQ=S△CMQ,求P點(diǎn)的坐標(biāo).
(3)把拋物線沿x軸正半軸平移n個(gè)單位,使平移后的拋物線交直線BC于E、F兩點(diǎn),且E、F關(guān)于點(diǎn)B對(duì)稱,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長(zhǎng)沙”的號(hào)召,我市某街道決定從備選的五種樹中選購(gòu)一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(dòng)(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖兩個(gè)不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)所給信息解答以下問題:
(1)這次參與調(diào)查的居民人數(shù)為: ;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“楓樹”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請(qǐng)你估計(jì)這8萬人中最喜歡玉蘭樹的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)α角(0°<α<90°)得到△DEC,設(shè)CD交AB于F,連接AD,△ADF是等腰三角形旋轉(zhuǎn)角α度數(shù)為( 。
A. 20° B. 40° C. 20°或40° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ XOY=900,OW平分∠XOY,PA⊥OX,PB ⊥OY,PC⊥OW.若OA+ OB+OC=1,則OC=( ).
A. 2- B. -1 C. -2 D. 2-3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠PAQ=30°,在邊AP上順次截取AB=3cm,BC=10cm,以BC為直徑作⊙O交射線AQ于E、F兩點(diǎn),求:
(1)圓心O到AQ的距離;
(2)線段EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com