如圖,在△ABC中,AD為BC邊上的中線.已知AC=5,AD=4,則AB的取值范圍是     
3<AB<13

試題分析:在△ABC中,AD為BC邊上的中線,則BD="CD=" ;在三角形ACD中AC=5,AD=4,根據(jù)三角形的性質(zhì)(兩邊之和大于第三邊,兩邊之差小于第三邊),則,那么;在三角形ABC中AC=5,,根據(jù)三角形的性質(zhì)(兩邊之和大于第三邊,兩邊之差小于第三邊),AB的取值范圍是3<AB<13
點評:本題考查三角形的性質(zhì),解答本題需要掌握根據(jù)三角形的性質(zhì)(兩邊之和大于第三邊,兩邊之差小于第三邊),利用它來解答本題
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中BC邊上的高為h1,AB邊上的高為h2,△DEF中DE邊上的高為h3,下列結(jié)論正確的是(   )
A.h1=h2B.h2=h3C.h1=h3D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知:多邊形的每一個外角都等于40度,則這個多邊形是       邊形,共有    條對角線,其內(nèi)角和為        度。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

用一條直線將一個菱形分割成兩個多邊形,若這兩個多邊形的內(nèi)角和分別為M和N,則M+N的值不可能是
A.360°B.540°C.630°D.720°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

認真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.

探究1:如圖1,在中,的平分線的交點,分析發(fā)現(xiàn),理由如下: ∵分別是,的角平分線



(1)探究2:如圖2中, 與外角的平分線的交點,試分析有怎樣的關(guān)系?請說明理由.
(2)探究3: 如圖3中,是外角與外角的平分線的交點,則有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點,則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)
(4)運用:如圖5,五邊形ABCDE中,∠BCD、∠EDC的外角分別是∠FCD、∠GDC,CP、DP分別平分∠FCD和∠GDC且相交于點P,若∠A=140°,∠B=120°,∠E=90°,則∠CPD=_____度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點E、F分別是正方形紙片ABCD的邊BC、CD上一點,將正方形紙片ABCD分別沿AE、AF折疊,使得點B、D恰好都落在點G處,且EG=2,F(xiàn)G=3,則正方形紙片ABCD的邊長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,以直角三角形的三邊分別向外作正方形,其中兩個以直角邊為邊長的正方形面積分別為225和400,則正方形的面積是(    )
A.175B.575C.625D.700

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在△ABC與△A’B’C’中,有下列條件:
;⑵③∠A=∠;④∠C=∠
如果從中任取兩個條件組成一組,那么能判斷△ABC∽△A’B’C’的共有( )組。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在△中,.于點,且,的延長線于點.求證:.

查看答案和解析>>

同步練習冊答案