如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
(1)求證:AD⊥DC;
(2)若AD=2,AC=,求AB的長.
考點: 切線的性質(zhì);相似三角形的判定與性質(zhì).
專題: 綜合題;壓軸題.
分析: (1)連接OC,根據(jù)切線的性質(zhì)得到OC與CD垂直,進而得到∠OCA+∠DCA=90°,由AC為角平分線,根據(jù)角平分線定義得到兩個角相等,又OA=OC,根據(jù)等邊對等角得到又得到另兩個角相等,等量代換后得到∠DAC=∠OCA,根據(jù)等角的余角相等得到∠DCA+∠DAC=90°,從而得到∠ADC為直角,得證;
(2)連接CB,由AB為圓O的直徑,根據(jù)直徑所對的圓周角為直角得到∠ACB與∠ADC相等都為直角,又根據(jù)AC為角平分線得到一對角相等,由兩對對應角相等的兩三角形相似,得到三角形ADC與三角形ABC相似,由相似得比例列出關系式,把AC和AD的長即可求出AB的長.
解答: 解:(1)連接OC,
∵直線CD與⊙O相切于點C,
∴OC⊥CD.
∴∠OCA+∠DCA=90°,
∵AC平分∠DAB,
∴∠DAC=∠OAC,
又∵在⊙O中,OA=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OCA,
∴∠DCA+∠DAC=90°,
則∠ADC=90°,
即AD⊥DC;
(2)連接BC.
∵AB為圓O的直徑,
∴∠ACB=90°,
∴∠ADC=∠ACB=90°,
又∵AC平分∠DAB,
∴∠DAC=∠OAC,
∴△ADC∽△ACB,
∴,即,
則.
點評: 此題考查了切線的性質(zhì),圓周角定理以及相似三角形的判定與性質(zhì).運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.同時要求學生掌握直徑所對的圓周角為直角.圓與相似三角形及三角函數(shù)相融合的解答題、與切線的性質(zhì)和判定有關的證明題是近幾年中考的熱點試題.
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.將△ABC繞直角頂點C逆時針旋轉(zhuǎn)60°得△A′B′C,則點B轉(zhuǎn)過的路徑長為( 。
A. B. C. D. π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
從某玉米種子中抽取6批,在同一條件下進行發(fā)芽試驗,有關數(shù)據(jù)如下:
種子粒數(shù) 100 400 800 1000 2000 5000
發(fā)芽種子粒數(shù) 85 298 652 793 1604 4005
發(fā)芽頻率 0.850 0.745 0.815 0.793 0.802 0.801
根據(jù)以上數(shù)據(jù)可以估計,該玉米種子發(fā)芽的概率約為 (精確到0.1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某商場出售一批進價為2元的賀卡,在市場營銷中發(fā)現(xiàn),此商品的日銷售單價x(單位:元)與日銷售數(shù)量y(單位:張)之間有如下關系:
銷售單價x(元) 3 4 5 6
日銷售量y(張) 20 15 12 10
(1)根據(jù)表中數(shù)據(jù)在平面直角坐標系中描出實數(shù)對(x,y)的對應點;
(2)確定y與x之間的函數(shù)關系式,并畫出圖象;
(3)設銷售此賀卡的日純利潤為w元,試求出w與x之間的函數(shù)關系式.若物價局規(guī)定該賀卡售價最高不超過10元/張,請你求出日銷售單價x定為多少元時,才能獲得最大日銷售利潤?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com