如圖,邊長為2的正方形ABCD繞點A逆時針旋轉45度后得到正方形AB′C′D′,邊B′C′與DC交于點O,則四邊形AB′OD的周長是( )

A.
B.6
C.
D.2+
【答案】分析:由邊長為2的正方形ABCD繞點A逆時針旋轉45度后得到正方形AB′C′D′,可求三角形與邊長的差B′C,再根據(jù)等腰直角三角形的性質,勾股定理可求B′O,OD,從而可求四邊形AB′OD的周長.
解答:解:連接B′C,
∵旋轉角∠BAB′=45°,∠BAC=45°,
∴B′在對角線AC上,
∵AB=AB′=2,
在Rt△ABC中,AC==2
∴B′C=2-2,
在等腰Rt△OB′C中,OB′=B′C=2-2,
在直角三角形OB′C中,OC=(2-2)=4-2,
∴OD=2-OC=2-2,
∴四邊形AB′OD的周長是:2AD+OB′+OD=4+2-2+2-2=4
故選A.
點評:本題考查了正方形的性質,旋轉的性質以及等腰直角三角形的性質.此題難度適中,注意連接B′C構造等腰Rt△OB′C是解題的關鍵,注意旋轉中的對應關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,邊長為
π2
的正△ABC,點A與原點O重合,若將該正三角形沿數(shù)軸正方向翻滾一周,點A恰好與數(shù)軸上的點A′重合,則點A′對應的實數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖將邊長為1的正方形OAPB沿軸正方向連續(xù)翻轉2006次,點P依次落在點,,,……的位置,則的橫坐標=_________.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年新人教版九年級(上)期中數(shù)學試卷(7)(解析版) 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案