【題目】如圖,已知在紙面上有一條數(shù)軸.
操作一:
(1)折疊紙面,使表示1的點與表示的點重合,則表示的點與表示______的點重合.
操作二:
(2)折疊紙面,使表示的點與表示3的點重合,回答下列問題:
①表示5的點與表示______的點重合;
②若數(shù)軸上A,B兩點之間的距離為9(A在B的左側(cè)),且折疊后A,B兩點重合,求A,B兩點表示的數(shù).
【答案】(1)2;(2)①-3;②點A表示的數(shù)為-,點B表示的數(shù)為.
【解析】
(1)確定對稱中心即可解決問題;
(2)①確定對稱中心即可解決問題;
②構(gòu)建方程即可解決問題.
(1)∵表示1的點與表示-1的點重合,
∴表示-2的點與表示2的點重合,
故答案為2.
(2)①∵表示-1的點與表示3的點重合,
∴對稱中心表示的數(shù)是1.
∴表示5的點與表示的-3點重合,
故答案為-3.
②設(shè)B表示的數(shù)為x,則有x-1=,
得到x=,
設(shè)點A表示的數(shù)為y,則有1-y=,得到y=-,
∴點A表示的數(shù)為-,點B表示的數(shù)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)1至2018按一定規(guī)律排列如下表:
平移表中帶陰影的方框,方框中三個數(shù)的和可能是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C測得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實驗樓與教學(xué)樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標系中的圖像可能是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,點E是AC的一點,連接EB,過點A做AM⊥BE,垂足為M,AM與BD相交于點F.
(1)猜想:如圖(1)線段OE與線段OF的數(shù)量關(guān)系為 ;
(2)拓展:如圖(2),若點E在AC的延長線上,AM⊥BE于點M,AM、DB的延長線相交于點F,其他條件不變,(1)的結(jié)論還成立嗎?如果成立,請僅就圖(2)給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
①-3,9,-27,81,-243,…
②-5,7,-29,79,-245,…
③-1,3,-9,27,-81,…
(1)用乘方的形式表示第①行數(shù)中的第2019個數(shù);
(2)第②、③行數(shù)與第①行數(shù)分別有什么關(guān)系?
(3)分別取每行的第10個數(shù),計算這三個數(shù)的和。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張長方形桌子可坐6人,按圖3將桌子拼在一起.
(1)2張桌子拼在一起可坐 人,4張桌子拼在一起可坐 人,n張桌子拼在一起可坐 人;
(2)一家餐廳有40張這樣的長方形桌子,按照上圖的方式每5張拼成1張大桌子,則40張桌子可拼成8張大桌子,共可坐多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機.為了解學(xué)生手機使用情況,某學(xué)校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學(xué)生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知“查資料”的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補全條形統(tǒng)計圖;
(3)該校共有學(xué)生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于點H,過點C作CD⊥AC,連接AD,點M為AC上一點,且AM=CD,連接BM交AH于點N,交AD于點E.
(1)若AB=3,AD=,求△BMC的面積;
(2)點E為AD的中點時,求證:AD=BN .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com