已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,P為斜邊AB上一點(diǎn),Q為直線BC上一點(diǎn),且PC=PQ,若BQ=2,則AP的長(zhǎng)度為
3
2
2
3
2
2
分析:根據(jù)題意畫出圖形,求出AB,過P作PM⊥BC于M,求出PM=BM,根據(jù)等腰三角形性質(zhì)求出CM=MQ,根據(jù)已知得出關(guān)于BM的方程,求出BM、PM長(zhǎng),根據(jù)勾股定理求出BP,即可求出答案.
解答:解:在△ACB中,∠ACB=90°,AC=BC=4,由勾股定理得:AB=
42+42
=4
2
,
過P作PM⊥BC于M,
則∠PMB=90°,
∵△ACB中,∠ACB=90°,AC=BC,
∴∠ABC=45°,
∴∠BPM=45°=∠ABC,
∴PM=BM,
∵PC=PQ,PM⊥BC,
∴CM=MQ,
分為兩種情況:
①如圖1,Q在線段BC上時(shí),
∵CM=MQ,BC=4,BQ=2,
∴CM=4-BM,MQ=BM-2,
即4-BM=BM-2,
∴BM=3,
在Rt△BMP中,BM=PM=3,由勾股定理得:BP=
32+32
=3
2

∴AP=4
2
-3
2
=
2

②如圖2,Q在CB延長(zhǎng)線時(shí)時(shí),
∵CM=MQ,
∴4-BM=BM+2,
∴BM=1,
Rt△BMP中,BM=PM=1,由勾股定理得:BP=
12+12
=
2
,
∴AP=4
2
-
2
=3
2

故答案為:3
2
2
點(diǎn)評(píng):本題考查了等腰直角三角形性質(zhì),等腰三角形性質(zhì),勾股定理的應(yīng)用,關(guān)鍵是求出BP長(zhǎng),注意有兩種情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知等腰Rt△ABC,AC=BC=2,D為射線CB上一動(dòng)點(diǎn),經(jīng)過點(diǎn)A的⊙O與BC相切于點(diǎn)D,交直線AC于點(diǎn)E.
(1)如圖1,當(dāng)點(diǎn)D在斜邊AB上時(shí),求⊙O的半徑;
(2)如圖2,點(diǎn)D在線段BC上,使四邊形AODE為菱形時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)如圖,已知等腰Rt△ABC中,∠B=90°,AB=BC=8cm,點(diǎn)P是線段AB上的點(diǎn),點(diǎn)Q是線段BC延長(zhǎng)線上的點(diǎn),且AP=CQ,PQ與直線AC相交于點(diǎn)D.作PE⊥AC于點(diǎn)E,則線段DE的長(zhǎng)度( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)如圖,已知等腰Rt△ABC中,∠ACB=90°,點(diǎn)D為等腰Rt△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長(zhǎng)線上的一點(diǎn),且CE=CA.
(1)求證:DE平分∠BDC;
(2)連接BE,設(shè)DC=a,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知等腰Rt△ABC和等腰Rt△EDF,其中D、G分別為斜邊AB、EF的中點(diǎn),連CE,又M為BC中點(diǎn),N為CE的中點(diǎn),連MN、MG
(1)如圖1,當(dāng)DE恰好過M點(diǎn)時(shí),求證:∠NMG=45°,且MG=
2
MN;
(2)如圖2,當(dāng)?shù)妊黂t△EDF繞D點(diǎn)旋轉(zhuǎn)一定的度數(shù)時(shí),第(1)問中的結(jié)論是否仍成立,并證明;
(3)如圖3,連BF,已知P為BF的中點(diǎn),連CF與PN,若CF=6,直接寫出
PN
CF
=
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D為△ABC的一個(gè)外角∠ABF的平分線上一點(diǎn),且∠ADC=45°,CD交AB于E,
(1)求證:AD=CD;
(2)求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案