如圖,△ABC是等邊三角形.P是∠ABC的平分線BD上一點,PE⊥AB于點E,線段BP的垂直平分線交BC于點F,垂足為點Q.若BF=2,則PE的長為   
【答案】分析:在直角△BFQ中,利用三角函數(shù)即可求得BQ的長,則BP的長即可求得,然后在直角△BPE中,利用30度所對的直角邊等于斜邊的一半即可求得PE的長.
解答:解:∵△ABC是等邊三角形.P是∠ABC的平分線BD上一點,
∴∠FBQ=∠EBP=30°,
∴在直角△BFQ中,BQ=BF•cos∠FBQ=2×=
又∵QF是BP的垂直平分線,
∴BP=2BQ=2
∵直角△BPE中,∠EBP=30°,
∴PE=BP=
故答案是:
點評:本題考查了等邊三角形的性質以及直角三角形的性質和三角函數(shù),正確求得BQ的長是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點B,C,且與BA,CA的延長線分別交于點D,E,弦DF精英家教網(wǎng)∥AC,EF的延長線交BC的延長線于點G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點D作BC的平行線交AC于E,則△ADE的三個內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點,∠BAD=15°,將△ABD繞點A點逆時針方向旋轉后到達△ACE的位置,那么旋轉角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結BD并延長與CE交于點E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

同步練習冊答案