【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線(xiàn),CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.
【答案】
(1)證明:在△ABC中,AB=AC,AD⊥BC,
∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分線(xiàn),
∴∠MAE=∠CAE,
∴∠DAE=∠DAC+∠CAE= 180°=90°,
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四邊形ADCE為矩形
(2)當(dāng)△ABC滿(mǎn)足∠BAC=90°時(shí),四邊形ADCE是一個(gè)正方形.
理由:∵AB=AC,
∴∠ACB=∠B=45°,
∵AD⊥BC,
∴∠CAD=∠ACD=45°,
∴DC=AD,
∵四邊形ADCE為矩形,
∴矩形ADCE是正方形.
∴當(dāng)∠BAC=90°時(shí),四邊形ADCE是一個(gè)正方形
【解析】(1)根據(jù)矩形的有三個(gè)角是直角的四邊形是矩形,已知CE⊥AN,AD⊥BC,所以求證∠DAE=90°,可以證明四邊形ADCE為矩形.(2)根據(jù)正方形的判定,我們可以假設(shè)當(dāng)AD= BC,由已知可得,DC= BC,由(1)的結(jié)論可知四邊形ADCE為矩形,所以證得,四邊形ADCE為正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為5的⊙P與y軸交于點(diǎn)M(0,﹣4),N(0,﹣10),點(diǎn)P的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△AEC中,∠E=90°,請(qǐng)按如下要求進(jìn)行操作和判斷:
(1)尺規(guī)作圖:作△AEC的外接圓⊙O,并標(biāo)出圓心O(不寫(xiě)畫(huà)法);
(2)延長(zhǎng)CE,在CE的延長(zhǎng)線(xiàn)上取點(diǎn)B,使EB=EC,連結(jié)AB,設(shè)AB與⊙O的交點(diǎn)為D(標(biāo)出字母B、D),判斷:圖中 與 相等嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(x>y),下列四個(gè)說(shuō)法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中說(shuō)法正確的是( )
A.①②
B.①②③
C.①②④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點(diǎn)D,下列結(jié)論正確的有( )
①AD=BD=BC;
②△BCD∽△ABC;
③AD2=ACDC;
④點(diǎn)D是AC的黃金分割點(diǎn).
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD中,AB=10cm,AD=4cm,作如下折疊操作.如圖1和圖2所示.在邊AB上取點(diǎn)M,在邊AD或DC上取點(diǎn)P,連接MP,將△AMP或四邊形AMPD沿著直線(xiàn)MP折疊到△A′MP或四邊形A′MPD′,點(diǎn)A落點(diǎn)為點(diǎn)A′,點(diǎn)D落點(diǎn)為點(diǎn)D′.
探究:
(1)如圖1,若AM=8cm,點(diǎn)P在AD上,點(diǎn)A′落在DC上,則∠MA′C的度數(shù)為
(2)如圖2,若AM=5cm,點(diǎn)P在DC上,點(diǎn)A′落在DC上.
①求證:△MA′P是等腰三角形;
②請(qǐng)直接寫(xiě)出線(xiàn)段DP的長(zhǎng)是
(3)若點(diǎn)M固定為AB的中點(diǎn),點(diǎn)P由A開(kāi)始,沿A﹣D﹣C方向,在AD、DC邊上運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)速度為1cm/s,運(yùn)動(dòng)時(shí)間為t s,按操作要求折疊:
①求:當(dāng)MA′與線(xiàn)段DC有交點(diǎn)時(shí),t的取值范圍;
②直接寫(xiě)出當(dāng)點(diǎn)A′到邊AB 的距離最大時(shí),t的值是
發(fā)現(xiàn):若點(diǎn)M在線(xiàn)段AB上移動(dòng),點(diǎn)P仍為線(xiàn)段AD或DC上的任意點(diǎn),隨著點(diǎn)M的位置不同,按操作要求折疊后,點(diǎn)A的落點(diǎn)A′的位置會(huì)出現(xiàn)以下三種不同的情況:不會(huì)落在線(xiàn)段DC上,只有一次落在線(xiàn)段DC上,會(huì)有兩次落在線(xiàn)段DC上.請(qǐng)直接寫(xiě)出點(diǎn)A′有兩次落在線(xiàn)段DC上時(shí),AM的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解七年級(jí)學(xué)生上學(xué)期參加社會(huì)實(shí)踐活動(dòng)的情況,隨機(jī)抽查A市七年級(jí)部分學(xué)生參加社會(huì)實(shí)踐活動(dòng)天數(shù),并根據(jù)抽查結(jié)果制作了如下不完整的頻數(shù)分布表和條形統(tǒng)計(jì)圖.
A市七年級(jí)部分學(xué)生參加社會(huì)實(shí)踐活動(dòng)天數(shù)的頻數(shù)分布表
天數(shù) | 頻數(shù) | 頻率 |
3 | 20 | 0.10 |
4 | 30 | 0.15 |
5 | 60 | 0.30 |
6 | a | 0.25 |
7 | 40 | 0.20 |
A市七年級(jí)部分學(xué)生參加社會(huì)實(shí)踐活動(dòng)天數(shù)的條形統(tǒng)計(jì)圖
根據(jù)以上信息,解答下列問(wèn)題;
(1)求出頻數(shù)分布表中a的值,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)A市有七年級(jí)學(xué)生20000人,請(qǐng)你估計(jì)該市七年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)不少于5天的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y= 的圖象與一次函數(shù)y=k(x﹣2)的圖象交點(diǎn)為A(3,2),B(x,y).
(1)求反比例函數(shù)與一次函數(shù)的解析式及B點(diǎn)坐標(biāo);
(2)若C是y軸上的點(diǎn),且滿(mǎn)足△ABC的面積為10,求C點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com