我們知道Rt△ABC中,∠A=時,就有BC2=AC2+AB2,反過來在△ABC中,若有AC2+AB2=BC2,是否存在∠A=這樣的結論呢?下面就這個問題我們進行探究.

已知△ABC中,AC2+AB2=BC2

求證:∠A=

證明:作,使,

=AB,=AC,

=AB2+AC2.又∵BC2=AB2+AC2,

∴_____________

在△ABC和中,

∴_____________

∴_____________

(1)補充上述證明過程空缺的部分;

(2)上面已證的命題就是勾股定理的逆定理,可以直接運用上述的結論解決下面的問題:

已知正方形ABCD,AB=a,點E為AB的中點,點F在AD邊上,且AF=AD,用兩種不同的方法證明:EF⊥CE.

答案:
解析:

  (1)BC=,AC=,BC=,△ABC≌,∠A=

  (2)方法1:證△AEE∽△BCE,方法2:連CF,CF2=EF2+CE2,即∠FEC=


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長度之比等于大線段AC與線段AB的長度之比,即
CB
AC
=
AC
AB
=
5
-1
2
=0.61803398874989
.這種分割稱為黃金分割,點C叫做線段AB的黃金分割點.類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點為腰的黃金分割點.
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你說明D為腰AB的黃金分割點的理由.
(2)若腰和上底相等,對角線和下底相等的等腰梯形叫作黃金梯形,其對角線的交點為對角線的黃金分割點.如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點.
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對邊分別為a、b、c.若D是AB的黃金分割點,那么a、b、c之間的數(shù)量關系是什么并證明你的結論.
精英家教網精英家教網精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

以后我們會知道:在Rt△ABC中,∠C=90°,若
AC
BC
3
,則∠B=60°;現(xiàn)在已知關于x的一次函精英家教網數(shù)y=ax+a-
3

(1)當a取不同的非0實數(shù)時,我們可以得到一系列的一次函數(shù),這些函數(shù)都過一個共同點P,請求P的坐標;
(2)當a為何值時這個一次函數(shù)是正比例函數(shù)?
(3)當這個一次函數(shù)是正比例函數(shù)時,它的圖象與x軸的夾角a(a取銳角).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

同學們,學習了無理數(shù)之后,我們已經把數(shù)的領域擴大到了實數(shù)的范圍,這說明我們的知識越來越豐富了!可是,無理數(shù)究竟是一個什么樣的數(shù)呢?下面讓我們在幾個具體的圖形中認識一下無理數(shù).
(1)如圖①△ABC是一個邊長為2的等腰直角三角形.它的面積是2,把它沿著斜邊的高線剪開拼成如圖②的正方形ABCD,則這個正方形的面積也就等于正方形的面積即為2,則這個正方形的邊長就是
2
,它是一個無理數(shù).

(2)如圖,直徑為1個單位長度的圓從原點O沿數(shù)軸向右滾動一周,圓上的一點P(滾動時與點O重合)由原點到達點O′,則OO′的長度就等于圓的周長π,所以數(shù)軸上點O′代表的實數(shù)就是
π
π
,它是一個無理數(shù).

(3)如圖,在Rt△ABC中,∠C=90°,AC=2,BC=1,根據勾股定理可求得AB=
5
5
,它是一個無理數(shù).

好了,相信大家對無理數(shù)是不是有了更具體的認識了,那么你是也試著在圖形中作出兩個無理數(shù)吧:
1、你能在6×8的網格圖中(每個小正方形邊長均為1),畫出一條長為
10
的線段嗎?

2、學習了實數(shù)后,我們知道數(shù)軸上的點與實數(shù)是一一對應的關系.那么你能在數(shù)軸上找到表示 -
5
的點嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分8分)通過學習三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖①在△ABC中,AB=AC,頂角A的正對記作sad A,這時sad A.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據上述角的正對定義,解下列問題:
(1)sad 60°=           .
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 
 A

 

查看答案和解析>>

同步練習冊答案