(2007•金華)在直角坐標系中,△ABC的三個頂點的位置如圖所示.
(1)請畫出△ABC關于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應點,不寫畫法);
(2)直接寫出A′,B′,C′三點的坐標:A′(______),B′(______),C′(______).

【答案】分析:(1)從三角形的各頂點向y軸引垂線并延長相同的長度,線段的端點就是要找的三頂點的對應點,順次連接;
(2)從畫出的圖形上找出新圖形的三頂點的坐標.
解答:解:(1)

(2)A′(2,3),B′(3,1),C′(-1,-2).
點評:本題主要考查了軸對稱圖形的畫法及對直角坐標系的認識,其中掌握畫法是做題的關鍵
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以OD為邊在Rt△AOB內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省黃岡市數(shù)學中考精品試卷之三(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以OD為邊在Rt△AOB內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年河北省中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以OD為邊在Rt△AOB內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2007•金華)在直角坐標系中,△ABC的三個頂點的位置如圖所示.
(1)請畫出△ABC關于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應點,不寫畫法);
(2)直接寫出A′,B′,C′三點的坐標:A′(______),B′(______),C′(______).

查看答案和解析>>

同步練習冊答案