點A(-2,y1)與B(-1,y2)都在反比例函數(shù)y=-
2
x
的圖象上,則y1與y2的大小關系為(  )
A、y1<y2
B、y1>y2
C、y1=y2
D、無法確定
分析:根據(jù)反比例函數(shù)的比例系數(shù)的符號可得在同一象限內(nèi)函數(shù)的增減性,進而可得y1與y2的大小.
解答:解:由題意得點A和點B在同一象限,
∵比例系數(shù)為-2,-2<-1,
∴y隨x的增大而增大,
∴y1<y2
故選A.
點評:考查反比例函數(shù)圖象上點的坐標特征;用到的知識點為:反比例函數(shù)的比例系數(shù)小于0,在每個象限內(nèi),y隨x的增大而增大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若點A(x1,y1)與點B(x2,y2)在y=-
6x
的圖象上,且x1>x2>0,則y1
 
 y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、已知拋物線y=ax2+bx+c的開口向下,對稱軸為直線x=1,若點A(-1,y1)與B(-2,y2)是此拋物線上的兩點,則y1
y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•海淀區(qū)一模)已知關于x的方程 mx2+(3m+1)x+3=0.
(1)求證:不論m為任何實數(shù),此方程總有實數(shù)根;
(2)若拋物線y=mx2+(3m+1)x+3與x軸交于兩個不同的整數(shù)點,且m為正整數(shù),試確定此拋物線的解析式;
(3)若點P(x1,y1)與Q(x1+n,y2)在(2)中拋物線上 (點P、Q不重合),且y1=y2,求代數(shù)式4x12+12x1n+5n2+16n+8的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•懷柔區(qū)二模)已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)若拋物線y=x2+(2m-1)x+m2-1與x軸交于兩個不同的整數(shù)點,求m的整數(shù)值;
(2)在(1)問條件下,若拋物線頂點在第三象限,試確定拋物線的解析式;
(3)若點M(x1,y1)與點N(x1+k,y2)在(2)中拋物線上 (點M、N不重合),且y1=y2.求代數(shù)式x12
16k+1
+6x1+5-k
的值.

查看答案和解析>>

同步練習冊答案