【題目】如圖,經(jīng)過原點的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點為A.過點P(1,m)作直線PM⊥x軸于點M,交拋物線于點B.記點B關于拋物線對稱軸的對稱點為C(B、C不重合).連接CB,CP.
(1)當m=3時,求點A的坐標及BC的長;
(2)當m>1時,連接CA,問m為何值時CA⊥CP?
(3)過點P作PE⊥PC且PE=PC,問是否存在m,使得點E落在坐標軸上?若存在,求出所有滿足要求的m的值,并定出相對應的點E坐標;若不存在,請說明理由.
【答案】
(1)解:當m=3時,y=﹣x2+6x
令y=0得﹣x2+6x=0
∴x1=0,x2=6,
∴A(6,0)
當x=1時,y=5
∴B(1,5)
∵拋物線y=﹣x2+6x的對稱軸為直線x=3
又∵B,C關于對稱軸對稱
∴BC=4.
(2)解:連接AC,過點C作CH⊥x軸于點H(如圖1)
由已知得∠ACP=∠BCH=90°
∴∠ACH=∠PCB
又∵∠AHC=∠PBC=90°
∴△ACH∽△PCB,
∴ ,
∵拋物線y=﹣x2+2mx的對稱軸為直線x=m,其中m>1,
又∵B,C關于對稱軸對稱,
∴BC=2(m﹣1),
∵B(1,2m﹣1),P(1,m),
∴BP=m﹣1,
又∵A(2m,0),C(2m﹣1,2m﹣1),
∴H(2m﹣1,0),
∴AH=1,CH=2m﹣1,
∴ ,
∴m= .
(3)解:∵B,C不重合,∴m≠1,
(I)當m>1時,BC=2(m﹣1),PM=m,BP=m﹣1,
(i)若點E在x軸上(如圖1),
∵∠CPE=90°,
∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,
在△BPC和△MEP中,
,
∴△BPC≌△MEP,
∴BC=PM,
∴2(m﹣1)=m,
∴m=2,此時點E的坐標是(2,0);
(ii)若點E在y軸上(如圖2),
過點P作PN⊥y軸于點N,
易證△BPC≌△NPE,
∴BP=NP=OM=1,
∴m﹣1=1,
∴m=2,
此時點E的坐標是(0,4);
(II)當0<m<1時,BC=2(1﹣m),PM=m,BP=1﹣m,
(i)若點E在x軸上(如圖3),
易證△BPC≌△MEP,
∴BC=PM,
∴2(1﹣m)=m,
∴m= ,此時點E的坐標是( ,0);
(ii)若點E在y軸上(如圖4),
過點P作PN⊥y軸于點N,
易證△BPC≌△NPE,
∴BP=NP=OM=1,
∴1﹣m=1,∴m=0(舍去),
綜上所述,當m=2時,點E的坐標是(2,0)或(0,4),
當m= 時,點E的坐標是( ,0).
【解析】(1)利用中點公式可知,兩對稱點的橫坐標和的一半就是對稱軸的橫坐標坐標;(2)由垂直可構造出相似三角形,用m的代數(shù)式表示相似三角形的邊長,代入比例式中構建方程,即可求出;(3)須分類討論,m>1或0<m<1,再分點E在x軸上或y 軸上,由垂直和相等關系構建全等三角形,對應邊相等可求出.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等邊△ABC中,點D,E分別是BC,AC邊上的中點,點P為AB邊上的一個動點,設AP=x,連接PE,PD,PC,DE,其中某條線段的長為y,若表示y與x的函數(shù)關系的圖象大致如圖2所示,則這條線段可能是( )
A.線段PE
B.線段PD
C.線段PC
D.線段DE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點坐標;
(2)如圖2,若P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點共線,求此時P點坐標及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面內的圖形M,N,給出如下定義:P為圖形M上任意一點,Q為圖形N上任意一點,如果P,Q兩點間的距離有最小值,那么稱這個最小值為圖形M,N間的“閉距離“,記作d(M,N).
如圖,等腰直角三角形ABC的一條直角邊AB垂直數(shù)軸于點D,斜邊AC與數(shù)軸交于點E,數(shù)軸上點O表示的有理數(shù)是0,若AB=BC=8,AD=6,OD=2.點O到邊BC的距離與線段DB的長相等.
(1)求d(點O,點E);
(2)求d(點O,△ABC).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為開展第二課堂,組織調查了本校300名學生各自最喜愛的一項體育活動,制成了如下扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖判斷下列說法,其中正確的一項是( )
A. 在調查的學生中最喜愛籃球的人數(shù)是50人
B. 喜歡羽毛球在統(tǒng)計圖中所對應的圓心角是144°
C. 其他所占的百分比是20%
D. 喜歡球類運動的占50%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC沿射線AB的方向平移2個單位到△DEF的位置,點A、B、C的對應點分別點D、E、F.
(1)直接寫出圖中與AD相等的線段.
(2)若AB=3,則AE=______.
(3)若∠ABC=75°,求∠CFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,E分別在AC,DF上,BD,CE均與AF相交,∠1=∠2,∠C=∠D,求證:∠A=∠F.
證明:∵∠1=∠2(已知),∠2=∠3(______)
∴∠1=∠3(______)
∴BD∥CE(______)
∴∠C=∠ABD(______)
又∵∠C=∠D(已知)
∴∠D=∠ABD(_______)
∴________(________)
∴∠A=∠F(________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某電信部門計劃修建一條連接B,C兩地的電纜.測量人員在山腳A點測得B,C兩地的仰角分別為30°、45°,在B地測得C地的仰角為60°.已知C地比A地高200m,電纜BC至少長多少米(精確到1m)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com