【題目】如圖,在正方形 ABCD 中,E是BC的中點,F是CD上一點,AE⊥EF.有下列結論:
①∠BAE=30°;
②射線FE是∠AFC的角平分線;
③CF=CD;
④AF=AB+CF.
其中正確結論的個數為( )
A.1 個B.2 個C.3 個D.4 個
【答案】B
【解析】
根據點E為BC中點和正方形的性質,得出∠BAE的正切值,從而判斷①,再證明△ABE∽△ECF,利用有兩邊對應成比例且夾角相等三角形相似即可證得△ABE∽△AEF,可判斷②③,過點E作AF的垂線于點G,再證明△ABE≌△AGE,△ECF≌△EGF,即可證明④.
解:∵E是BC的中點,
∴tan∠BAE=,
∴∠BAE30°,故①錯誤;
∵四邊形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,
在△BAE和△CEF中,
,
∴△BAE∽△CEF,
∴,
∴BE=CE=2CF,
∵BE=CF=BC=CD,
即2CF=CD,
∴CF=CD,
故③錯誤;
設CF=a,則BE=CE=2a,AB=CD=AD=4a,DF=3a,
∴AE=a,EF=a,AF=5a,
∴,,
∴,
又∵∠B=∠AEF,
∴△ABE∽△AEF,
∴∠AEB=∠AFE,∠BAE=∠EAG,
又∵∠AEB=∠EFC,
∴∠AFE=∠EFC,
∴射線FE是∠AFC的角平分線,故②正確;
過點E作AF的垂線于點G,
在△ABE和△AGE中,
,
∴△ABE≌△AGE(AAS),
∴AG=AB,GE=BE=CE,
在Rt△EFG和Rt△EFC中,
,
Rt△EFG≌Rt△EFC(HL),
∴GF=CF,
∴AB+CF=AG+GF=AF,故④正確.
故選B.
科目:初中數學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗. 我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整). 請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F為弦AC的中點,連接OF并延長交弧AC于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接AD、CD、OC.填空
①當∠OAC的度數為 時,四邊形AOCD為菱形;
②當OA=AE=2時,四邊形ACDE的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某店代理某品牌商品的銷售.已知該品牌商品進價每件40元,日銷售y(件)與銷售價x(元/件)之間的關系如圖所示(實線),付員工的工資每人每天100元,每天還應支付其它費用150元.
(1)求日銷售y(件)與銷售價x(元/件)之間的函數關系式;
(2)該店員工人共3人,若某天收支恰好平衡(收入=支出),求當天的銷售價是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解學生對“預防新型冠狀病毒”知識的掌握情況,學校組織了一次線上知識培訓,培訓結束后進行測試,在全校2000名學生中,分別抽取了男生,女生各15份成績,整理分析過程如下,請補充完整.
(收集數據)
15名男生測試成績統(tǒng)計如下:(滿分100分)78,90,99,93,92,95,94,100,90,85,86,95,75,88,90
15名女生測試成績統(tǒng)計如下:(滿分100分)77,82,83,86,90,90,92,91,93,92,92,92,92,98,100
(整理、描述數據)
70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 | 95.5~100.5 | |
男生 | 1 | 1 | 1 | 5 | 5 | 2 |
女生 | 0 | 1 | 2 | 3 | 7 | 2 |
(分析數據)
(1)兩組樣本數據的平均數、眾數、中位數、方差如下表所示:
性別 | 平均數 | 眾數 | 中位數 | 方差 |
男生 | 90 | 90 | 90 | 44.9 |
女生 | 90 | 32.8 |
在表中:________.________;
(2)若規(guī)定得分在80分以上(不含80分)為合格,請估計全校學生中“預防新型冠狀病毒”知識測試合格的學生有多少人?
(3)通過數據分析得到的結論,你認為男生和女生中誰的成績比較好?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸相交于、兩點,與軸相交于點,且點與點的坐標分別為,,點是拋物線的頂點.
(1)求二次函數的關系式.
(2)點為線段上一個動點,過點作軸于點.若,的面積為.
①求與的函數關系式,寫出自變量的取值范圍.
②當取得最值時,求點的坐標.
(3)在上是否存在點,使為直角三角形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校計劃組織學生參加“書法”、“攝影”、“航模”、“圍棋”四個課外興趣小組,要求每人必須參加,并且只能選擇其中一個小組,為了解學生對四個課外興趣小組的選擇情況,學校從全體學生中隨機抽取部分學生進行問卷調查,并把調查結果制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(部分信息未給出),請你根據給出的信息解答下列問題:
(1)求參加這次問卷調查的學生人數,并補全條形統(tǒng)計圖(畫圖后請標注相應的數據);
(2)m=_______,n=_______;
(3)若該校共有1200名學生,試估計該校選擇“圍棋”課外興趣小組的學生有多少人?
(4)分別用A、B、C、D表示“書法”、“攝影”、“航!薄ⅰ皣濉,小明和小紅從中各選取一個小組,請用樹狀圖法或列表法求出“兩人選擇小組不同”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家計劃2035年前實施新能源汽車,某公司為加快新舊動能轉換,提高公司經濟效益,決定對近期研發(fā)出的一種新型能源產品進行降價促銷.根據市場調查:這種新型能源產品銷售單價定為200元時,每天可售出300個;若銷售單價每降低1元,每天可多售出5個.已知每個新型能源產品的成本為100元.
問:(1)設該產品的銷售單價為元,每天的利潤為元.則_________(用含的代數式表示)
(2)這種新型能源產品降價后的銷售單價為多少元時,公司每天可獲利32000元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司開發(fā)處一款新的節(jié)能產品,該產品的成本價為6元/件,該產品在正式投放市場前通過代銷點進行了為期一個月(30天)的試銷售,售價為10元/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪制成圖象,圖中的折線ABC表示日銷售量y(件)與銷售時間x(天)之間的函數關系.
(1)求y與x之間的函數表達式,并寫出x的取值范圍;
(2)若該節(jié)能產品的日銷售利潤為W(元),求W與x之間的函數表達式,并求出日銷售利潤不超過1040元的天數共有多少天?
(3)若5≤x≤17,直接寫出第幾天的日銷售利潤最大,最大日銷售利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com